

Mitel MiContact Center Enterprise

 WEB SERVICES INTEGRATION SCRIPT MANAGER
 USER GUIDE

 Release 9.2

Web Services Integration Script Manager - User Guide

ii

NOTICE

The information contained in this document is believed to be accurate in all respects but is not warranted
by Mitel Networks™ Corporation (MITEL

®
). The information is subject to change without notice and

should not be construed in any way as a commitment by Mitel or any of its affiliates or subsidiaries. Mitel
and its affiliates and subsidiaries assume no responsibility for any errors or omissions in this document.
Revisions of this document or new editions of it may be issued to incorporate such changes.

No part of this document can be reproduced or transmitted in any form or by any means - electronic or

mechanical - for any purpose without written permission from Mitel Networks Corporation.

TRADEMARKS

The trademarks, service marks, logos and graphics (collectively "Trademarks") appearing on Mitel's

Internet sites or in its publications are registered and unregistered trademarks of Mitel Networks

Corporation (MNC) or its subsidiaries (collectively "Mitel") or others. Use of the Trademarks is prohibited

without the express consent from Mitel. Please contact our legal department at legal@mitel.com for

additional information. For a list of the worldwide Mitel Networks Corporation registered trademarks,

please refer to the website: http://www.mitel.com/trademarks.

Web Services Integration Script Manager
User Guide

Release 9.2 – November 2016

®,™ Trademark of Mitel Networks Corporation
© Copyright 2016 Mitel Networks Corporation

All rights reserved

Web Services Integration Script Manager - User Guide

1

INTRODUCTION

This document describes how to incorporate web service calls from Script Manager.

A tutorial based on a sample script is also detailed.

SAMPLE SCRIPT FILES

The sample script files used in this document are available on the MiCC Enterprise product DVD.

See document Installing Sample Scripts for details.

Web Services Integration Script Manager - User Guide

2

WEB SERVICES IN SCRIPT MANAGER

OVERVIEW

Script Manager can interact with web services by means of the VBScriptExecute block available

in the System Object component library.

Although there are many ways to invoke a web service from the VBScriptExecute block, the

easiest is the following:

 Create a client .NET class library (DLL) in C# or VB.NET using Visual Studio.

 In this DLL, add the service reference (SOAP or WCF service) or create a client class
compatible with the web service technology (REST, XML-RPC, JSON-RPC, XMPP, etc.)

 From this DLL, expose a very simple API to be invoked by the script (just 1 method if
possible).

 Implement each method of this API by invoking as many web service methods as necessary,
taking into considerations all service-specific features (session management, authentication,
security certificate, etc.).

 Create a small test executable (or unit tests suite) to validate the DLL.

 In the script, use a single VBScript block to reference this DLL and invoke its method(s),
passing Script Manager variables as input & output arguments.

 On the production server, copy this DLL to the <InstallDir>\ScriptManager\Bin directory.

The “philosophy” is thus to

 do all the complex stuff inside the client DLL and

 use just a single VBScript block to call a method of this DLL and pass SM variables as
arguments (→ 2 or 3 lines).

Web Services Integration Script Manager - User Guide

3

TUTORIAL

The Web Services tutorial demonstrates how to use Script Manager to invoke some

Configuration Web Service methods.

More specifically, the script will change the skill level of a particular agent. Both the skill and the

agent must be identified by their name.

PREREQUISITES

In order to complete this tutorial, you will need:

 The Microsoft .NET Framework 4.5.

 The Microsoft Visual Studio Express 2013 for Windows Desktop or later version.

CREATE A C# DLL USING VISUAL STUDIO

CREATE A C# PROJECT

1. Start Visual Studio.

2. On the menu bar, choose File, New, and Project.
The New Project dialog box opens.

3. Expand Installed, expand Templates, and click Visual C# to display all available Visual
C# templates.

4. In the center section of the dialog, select Class Library.

5. In the Name box, specify a name for your project, for instance
ConfigurationWebServiceClient.

6. Press the OK button.
The new project appears in Solution Explorer.

7. In Solution Explorer, right-click ConfigurationWebServiceClient, click Add, and then
click Class.
The Add New Item dialog box opens.

8. Type Configuration in the Name box and then click Add to create the class.
A class named Configuration is added to the class library.

9. In Solution Explorer, right-click Class1.cs and then click Delete.
This deletes the default class that is provided with the class library, because it will not be
used in this tutorial.

10. In the File menu, click Save All to save the project.

CREATE A PROXY CLASS

A proxy is a local object that represents a web service in a form that the client application can use

to communicate with the remote service.

1. In Solution Explorer, right-click the References node underneath the
ConfigurationWebServiceClient project, and click Add Service Reference.
The Add Service Reference dialog box is displayed.

Web Services Integration Script Manager - User Guide

4

2. In the Address box, enter the URI of the Configuration Web Service, for instance
http://MiCC Enterprise-server:8524/Configuration.

3. Press the Go button.
If the Configuration Web Service is accessible at the specified URI, the Services and
Operations lists are populated.

4. Enter a name in the Namespace box, for instance ConfigurationServiceReference.
The proxy and its associated data structures will be created as new classes in this
namespace.

5. Press the OK button.

6. After this step

o the ConfigurationServiceReference appears under Service References in the project,
and

o the app.config file is updated to include elements that can be used to instantiate the
proxy.

The following is a view of the configuration file (app.config):

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <bindings>

 <basicHttpBinding>

 <binding name="BasicHttpBinding_IConfiguration">

 <security mode="TransportCredentialOnly">

 <transport clientCredentialType="Basic" />

 </security>

 </binding>

 </basicHttpBinding>

 </bindings>

 <client>

 <endpoint address="http://MiCC Enterprise-server:8524/Configuration/soap"

 binding="basicHttpBinding"
 bindingConfiguration="BasicHttpBinding_IConfiguration"

 contract="ConfigurationServiceReference.IConfiguration"
 name="BasicHttpBinding_IConfiguration" />

 </client>

 </system.serviceModel>

</configuration >

It shows the following endpoint information under the <client> element:

The endpoint that the proxy uses to access the service that is located at the following address:

http://MiCC Enterprise-server:8524/Configuration/soap.

The endpoint element specifies that the ConfigurationServiceReference.IConfiguration

service contract is used for communication between the proxy and the service while the

configured binding is the system-provided basicHttpBinding.

Web Services Integration Script Manager - User Guide

5

INSTANTIATING THE PROXY

After defining the proxy class, client code can be added to instantiate the proxy.

Instantiating the proxy consists of specifying the endpoint that the proxy uses to access the

service. An endpoint has an address, a binding and a contract, and each of these must be

specified in the process of instantiating the proxy.

This can be done by defining endpoints in code or using the configuration file (app.config) that

was updated or created together with the proxy class.

Instantiating the proxy using the application configuration file

The endpoint configuration name BasicHttpBinding_IConfiguration will be used as argument of

the proxy constructor so that proxy instance properties such as security mode and transport are

correctly set.

In addition, the remote address of the service may also be provided as argument of the proxy

constructor.

// Create a proxy with given client endpoint configuration.
proxy = new ConfigurationClient("BasicHttpBinding_IConfiguration");

Note that the configuration file will not be used by the class library project. You will need to add

the settings in the generated configuration file to the .config file for the executable that will call the

class library. See section 0.

Instantiating the proxy using configuration information specified in code

Instead of obtaining the binding definition from a .config file, it is also possible to set them in code

as in the following excerpt.

// Specify the binding to be used for the proxy.

BasicHttpBinding binding = new BasicHttpBinding();

binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;

binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.Basic;

// Specify the address to be used for the proxy.

EndpointAddress endpointAddress = new
 EndpointAddress("http://localhost:8524/Configuration/soap");

// Create a proxy using the endpoint address and binding.
proxy = new ConfigurationClient(binding, endpointAddress);

It is usually the best practice to specify the binding and address information declaratively in

configuration rather than imperatively in code. Keeping the binding and addressing information

out of the code allows them to change without having to recompile or redeploy the application.

Web Services Integration Script Manager - User Guide

6

AUTHENTICATION

To determine what client credential type is required, examine the <bindings> section of the

configuration file. Within the section are binding elements that specify the security requirements.

Specifically, examine the <security> element of each binding. That element includes the mode

attribute, which you can set to one of three possible values (Message, Transport, or

TransportWithMessageCredential). The value of the attribute determines the mode, and the

mode determines which of the child elements is significant.

The <security> element can contain either a <transport> or <message> element, or both. The

significant element is the one that matches the security mode.

For example, the following code specifies that the security mode is "TransportCredentialOnly",

and the client credential type for the <transport> element is "Basic".

// Specify the binding to be used for the proxy.

BasicHttpBinding binding = new BasicHttpBinding();

binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;
binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.Basic;

To be allowed to invoke Configuration Web Service methods, the client application must

provide valid MiCC Enterprise credentials.

To ensure that each method invocation is authenticated by the Configuration Web Service, the

ClientCredentials property of the proxy instance must be set.

// Specify the client credential value on the proxy in code
proxy.ClientCredentials.UserName.UserName = userName;
proxy.ClientCredentials.UserName.Password = password;

CALLING OPERATIONS

Once you have a proxy object created and configured, call operations in the same way that you

would if the object were local. Close the proxy once the operation invocations are completed.

// Making calls.

User user = proxy.GetUserByLogonId(tenantId, logonId);

Skill skill = proxy.GetSkillByName(tenantId, skillName);

SkillLevel skillLevel = new SkillLevel();

skillLevel.SkillId = skill.Id;

skillLevel.Level = level;

proxy.AddSkillLevelToUser(tenantId, user.Id, skillLevel);

//Closing the client gracefully closes the connection and cleans up resources.

proxy.Close();

The using directive (Imports in Visual Basic) at the beginning of the file enables you to use the

unqualified class names to reference the Configuration Web Service methods.

using ConfigurationWebServiceClient.ConfigurationServiceReference;

Web Services Integration Script Manager - User Guide

7

EXCEPTION HANDLING

Exceptions can occur in a client application when opening or closing the proxy, or when using the

proxy to call operations. It is recommended at a minimum that applications expect to handle

possible System.TimeoutException and System.ServiceModel.CommunicationException

exceptions in addition to any System.ServiceModel.FaultException objects that may be

triggered by operations.

The recommended way to handle these exceptions is to surround the code that invokes proxy

methods with a try block and append a catch block for each potential exception.

try

{

 // Client code using proxy

}

catch (TimeoutException timeProblem)

{

 Console.WriteLine("The service operation timed out. " + timeProblem.Message);
 proxy.Abort();

 return 1;

}

catch (FaultException unknownFault)

{

 Console.WriteLine("An unknown exception was received. " + unknownFault.Message);

 proxy.Abort();

 return 2;

}

catch (CommunicationException commProblem)

{

 Console.WriteLine("There was a communication problem. " +
 commProblem.Message + commProblem.StackTrace);
 proxy.Abort();

 return 3;

}

catch (Exception ex)

{

 Console.WriteLine("An unknown exception was received. " + ex.Message);
 proxy.Abort();

 return 4;

}

Web Services Integration Script Manager - User Guide

8

COMPILING THE CODE

using System;

using System.ServiceModel;

using ConfigurationWebServiceClient.ConfigurationServiceReference;

namespace ConfigurationWebServiceClient

{

 public class Configuration

 {

 ConfigurationClient proxy;

 public Configuration(string userName, string password)

 {

 // Specify the binding to be used for the proxy.

 BasicHttpBinding binding = new BasicHttpBinding();

 binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;

 binding.Security.Transport.ClientCredentialType =
 HttpClientCredentialType.Basic;

 // Specify the address to be used for the proxy.

 EndpointAddress endpointAddress = new
 EndpointAddress("http://localhost:8524/Configuration/soap");

 // Create a proxy using the endpoint address and binding.

 proxy = new ConfigurationClient(binding, endpointAddress);

 // Create a proxy with given client endpoint configuration.

 //proxy = new ConfigurationClient("BasicHttpBinding_IConfiguration");

 // Specify the client credential value on the proxy in code

 proxy.ClientCredentials.UserName.UserName = userName;

 proxy.ClientCredentials.UserName.Password = password;

 }

 public int AddSkillLevelToUser(int tenantId, string logonId, string skillName,
 int level)

 {

 try

 {

 // Making calls.

 User user = proxy.GetUserByLogonId(tenantId, logonId);

 Skill skill = proxy.GetSkillByName(tenantId, skillName);

 SkillLevel skillLevel = new SkillLevel();

 skillLevel.SkillId = skill.Id;

 skillLevel.Level = level;

 proxy.AddSkillLevelToUser(tenantId, user.Id, skillLevel);

Web Services Integration Script Manager - User Guide

9

 //Closing the client gracefully closes the connection and cleans up
 resources.

 proxy.Close();

 return 0;

 }

 catch (TimeoutException timeProblem)

 {

 Console.WriteLine("The service operation timed out. " +
 timeProblem.Message);
 proxy.Abort();

 return 1;

 }

 catch (FaultException unknownFault)

 {

 Console.WriteLine("An unknown exception was received. " +
 unknownFault.Message);
 proxy.Abort();

 return 2;

 }

 catch (CommunicationException commProblem)

 {

 Console.WriteLine("There was a communication problem. " +
 commProblem.Message + commProblem.StackTrace);
 proxy.Abort();

 return 3;

 }

 catch (Exception ex)

 {

 Console.WriteLine("An unknown exception was received. " + ex.Message);
 proxy.Abort();

 return 4;

 }

 }

 }

}

On the Build menu click Build Solution (or press CTRL+SHIFT+B).

TEST THE DLL

To test the ConfigurationWebServiceClient class library, you must have a project that uses it.

Use a VB.Net console application, so that you will be able to reuse your code in the Script

Manager VBScriptExecute block.

1. Start Visual Studio.

2. On the menu bar, choose File, New, and Project.
The New Project dialog box opens.

3. Expand Installed, expand Templates, and click Visual Basic to display all available

Web Services Integration Script Manager - User Guide

10

Visual Basic templates.

4. In the center section of the dialog, select Console Application.

5. In the Name box, specify a name for your project, for instance
TestConfigurationWebServiceClient.

6. Press the OK button.
The new project appears in Solution Explorer.

7. In Solution Explorer, right-click the References node underneath the
TestConfigurationWebServiceClient project, and click Add Reference.
The Add Reference dialog box opens.

8. Select the Browse tab, locate the folder where the ConfigurationWebServiceClient
library resides and select it.

9. Press the OK button.

10. After this step the ConfigurationWebServiceClient appears under References in the
project. You can then use the classes and methods of the library like you would use
those of the .NET Framework.

11. If Module1.vb isn't open in the Code Editor, open the shortcut menu for Module1.vb in
Solution Explorer, and then choose View Code.

12. Call the library class methods in your application.
Replace the contents of Module1.vb with the following code :

Imports ConfigurationWebServiceClient

Module Module1

 Sub Main()

 Dim adminLogonId As String = "Admin"

 Dim password As String = "admin"

 Dim tenantId As Long = -1

 Dim userLogonId As String = "user1"

 Dim skillName As String = "skill1"

 Dim skillLevel As Long = 5

 Dim result As Long

 Dim conf As Configuration

 'Initialize the class from the class library

 conf = New Configuration(adminLogonId, password)

 'Add SkillLevelToUser

 result = conf.AddSkillLevelToUser(tenantId, userLogonId, skillName, skillLevel)

 Console.WriteLine("The result is {0:d}", result)

 Console.WriteLine("Press [Enter] to close.")
 Console.ReadLine()

 End Sub

Web Services Integration Script Manager - User Guide

11

End Module

13. Choose the F5 key to run the application.

WEBSERVICE.MFD

The script presented in Figure 1 demonstrates the inclusion of web service calls during a voice

call.

This tutorial emphasizes the use of the VBScriptExecute block.

Double-click on WebService.mfd to open the script below.

Figure 1: Web Services sample script

This script handles invocation of web services methods. Its successive steps are the following:

 Receive an incoming call.

 Allocate resources and answer call.

 Get digits entered by the caller.

Web Services Integration Script Manager - User Guide

12

 Call the web service operations.

 Play “success” in case of success, or
“failure” in case of error.

PREREQUISITES

Before running the script, the following actions must be taken on the production server:

 Copy the ConfigurationWebServiceClient DLL to <InstallDir>\ScriptManager\Bin directory.

 If in the ConfigurationWebServiceClient project, the proxy has been instantiated using the
configuration file, add the settings in the app.config file to the
<InstallDir>\ScriptManager\Bin\flowprocessor.exe.config file.
You may need to create this file if it doesn’t already exist.

SESSION VARIABLES

The following session variables are defined.

AdminLogonId

 Type: String.

 Dimension: Zero.

 Initial Value: “Admin” (without quotes).

Password

 Type: String.

 Dimension: Zero.

 Initial Value: “admin” (without quotes).

TenantId

 Type: Long.

 Dimension: Zero.

 Initial Value: -1.

UserLogonId

 Type: String.

 Dimension: Zero.

 Initial Value: “user1” (without quotes).

SkillName

 Type: String.

 Dimension: Zero.

 Initial Value: “skill1” (without quotes).

Digits

 Type: String.

Web Services Integration Script Manager - User Guide

13

 Dimension: Zero.

 Initial Value:

ONCALLDELIVERED

Figure 2 shows how the Settings tab of the OnCallDelivered block is configured.

Specify the name of an existing BVD in the Monitored Device List.

Figure 2: OnCallDelivered Settings

ALLOCATERESOURCE

Figure 3 shows how the Settings tab of the AllocateResource block is configured.

Web Services Integration Script Manager - User Guide

14

Figure 3: AllocateResource Settings

GETDIGITS

Figure 4 shows how the Settings tab of the GetDigits block is configured.

Web Services Integration Script Manager - User Guide

15

Figure 4: GetDigits Settings

Web Services Integration Script Manager - User Guide

16

VBSCRIPTEXECUTE

Settings

Figure 5 shows how the Settings tab of the VBScriptExecute block is configured.

Figure 5: VBScriptExecute Settings

Web Services Integration Script Manager - User Guide

17

Here is the code inside the Script text field.

Imports System
Imports SMScriptBox
Imports ConfigurationWebServiceClient

<Serializable()> Public Class Script
 Shared Sub Main()
 Dim logonId As String
 Dim password As String
 Dim tenantId As Integer
 Dim userLogonId As String
 Dim skillName As String
 Dim skillLevel As Integer
 Dim conf As Configuration
 Dim result As Long

 ' Get required script variables
 logonId = FlowContext.GetVariable("@AdminLogonId")
 password = FlowContext.GetVariable("@Password")
 tenantId = FlowContext.GetVariable("@TenantId")
 userLogonId = FlowContext.GetVariable("@UserLogonId")
 skillName = FlowContext.GetVariable("@SkillName")
 skillLevel = CInt(FlowContext.GetVariable("@Digits"))

 ' Initialize the class from the class library
 conf = New Configuration(logonId, password)

 ' Invoke web service method
 result = conf.AddSkillLevelToUser(tenantId, userLogonId, skillName, skillLevel)

 ' Set the result
 FlowContext.SetResult(result)
 End Sub

End Class

To invoke a web service from the VBScriptExecute block, the client DLL need to be referenced as in this

example above.

Branches

Figure 6 shows how the Branches tab of the VBScriptExecute block is configured.

Web Services Integration Script Manager - User Guide

18

Figure 6: VBScriptExecute Branches

Web Services Integration Script Manager - User Guide

19

VOICE PROMPT

One voice prompt is used in this script to play a message to the caller.
Make sure the voice prompt is available and is configured in OAS as a play message.

 Table 1: Voice Prompt

SCRIPT MANAGER VARIABLE MESSAGE ID SAMPLE VOICE PROMPT DESCRIPTION

Msg 9999 “Please enter the skill level”

USAGE

To test this sample script, perform the following steps.

 Call the BVD number associated to the Service Access.

 Specify the desired skill level.

 Depending on the result of web service calls, the system then plays either “Success” , or
“Failure”.

 Using MiCC Enterprise Configuration Manager, verify that the skill level of the specified user
has been changed.

	Introduction
	Sample script files

	Web Services in Script Manager
	Overview

	Tutorial
	Prerequisites
	Create a C# DLL using Visual Studio
	Create a C# Project
	Create a proxy class
	Instantiating the proxy
	Instantiating the proxy using the application configuration file
	Instantiating the proxy using configuration information specified in code

	Authentication
	Calling operations
	Exception handling
	Compiling the code

	Test the DLL
	WebService.mfd
	Prerequisites
	Session Variables
	OnCallDelivered
	AllocateResource
	GetDigits
	VBScriptExecute
	Settings

	Voice prompt
	Usage

