Mitel MiContact Center Enterprise

WEB SERVICES INTEGRATION SCRIPT MANAGER
USER GUIDE

Release 9.2

00 Mitel

Web Services Integration Script Manager - User Guide

NOTICE

The information contained in this document is believed to be accurate in all respects but is not warranted
by Mitel Networks ™ Corporation (MITEL®). The information is subject to change without notice and
should not be construed in any way as a commitment by Mitel or any of its affiliates or subsidiaries. Mitel
and its affiliates and subsidiaries assume no responsibility for any errors or omissions in this document.
Revisions of this document or new editions of it may be issued to incorporate such changes.

No part of this document can be reproduced or transmitted in any form or by any means - electronic or
mechanical - for any purpose without written permission from Mitel Networks Corporation.

TRADEMARKS

The trademarks, service marks, logos and graphics (collectively "Trademarks") appearing on Mitel's
Internet sites or in its publications are registered and unregistered trademarks of Mitel Networks
Corporation (MNC) or its subsidiaries (collectively "Mitel") or others. Use of the Trademarks is prohibited
without the express consent from Mitel. Please contact our legal department at legal@mitel.com for
additional information. For a list of the worldwide Mitel Networks Corporation registered trademarks,
please refer to the website: http://www.mitel.com/trademarks.

Web Services Integration Script Manager
User Guide
Release 9.2 — November 2016

®,™ Trademark of Mitel Networks Corporation
© Copyright 2016 Mitel Networks Corporation
All rights reserved

Web Services Integration Script Manager - User Guide

INTRODUCTION

This document describes how to incorporate web service calls from Script Manager.

A tutorial based on a sample script is also detailed.

SAMPLE SCRIPT FILES

The sample script files used in this document are available on the MiCC Enterprise product DVD.
See document Installing Sample Scripts for detalils.

Web Services Integration Script Manager - User Guide

WEB SERVICES IN SCRIPT MANAGER

OVERVIEW

Script Manager can interact with web services by means of the VBScriptExecute block available
in the System Object component library.

Although there are many ways to invoke a web service from the VBScriptExecute block, the
easiest is the following:
e Create a client .NET class library (DLL) in C# or VB.NET using Visual Studio.

e Inthis DLL, add the service reference (SOAP or WCF service) or create a client class
compatible with the web service technology (REST, XML-RPC, JSON-RPC, XMPP, etc.)

From this DLL, expose a very simple API to be invoked by the script (just 1 method if
possible).

Implement each method of this API by invoking as many web service methods as necessary,
taking into considerations all service-specific features (session management, authentication,
security certificate, etc.).

Create a small test executable (or unit tests suite) to validate the DLL.

¢ In the script, use a single VBScript block to reference this DLL and invoke its method(s),
passing Script Manager variables as input & output arguments.

¢ On the production server, copy this DLL to the <InstallDir>\ScriptManager\Bin directory.

The “philosophy” is thus to
e do all the complex stuff inside the client DLL and

e use just a single VBScript block to call a method of this DLL and pass SM variables as
arguments (— 2 or 3 lines).

Web Services Integration Script Manager - User Guide

TUTORIAL

The Web Services tutorial demonstrates how to use Script Manager to invoke some
Configuration Web Service methods.

More specifically, the script will change the skill level of a particular agent. Both the skill and the
agent must be identified by their name.

PREREQUISITES

In order to complete this tutorial, you will need:
e The Microsoft .NET Framework 4.5.

e The Microsoft Visual Studio Express 2013 for Windows Desktop or later version.

CREATE A C# DLL USING VISUAL STUDIO

CREATE A C# PROJECT
1. Start Visual Studio.

2. On the menu bar, choose File, New, and Project.
The New Project dialog box opens.

3. Expand Installed, expand Templates, and click Visual C# to display all available Visual
C# templates.

4. In the center section of the dialog, select Class Library.

5. In the Name box, specify a name for your project, for instance
ConfigurationWebServiceClient.

6. Press the OK button.
The new project appears in Solution Explorer.

7. In Solution Explorer, right-click ConfigurationWebServiceClient, click Add, and then
click Class.
The Add New Item dialog box opens.

8. Type Configuration in the Name box and then click Add to create the class.
A class named Configuration is added to the class library.

9. In Solution Explorer, right-click Class1.cs and then click Delete.
This deletes the default class that is provided with the class library, because it will not be
used in this tutorial.

10. In the File menu, click Save All to save the project.
CREATE A PROXY CLASS

A proxy is a local object that represents a web service in a form that the client application can use
to communicate with the remote service.

1. In Solution Explorer, right-click the References node underneath the
ConfigurationWebServiceClient project, and click Add Service Reference.
The Add Service Reference dialog box is displayed.

Web Services Integration Script Manager - User Guide

2. In the Address box, enter the URI of the Configuration Web Service, for instance
http://MiCC Enterprise-server:8524/Configuration.

3. Press the Go button.
If the Configuration Web Service is accessible at the specified URI, the Services and
Operations lists are populated.

4. Enter a name in the Namespace box, for instance ConfigurationServiceReference.
The proxy and its associated data structures will be created as new classes in this
namespace.

. Press the OK button.

(o204]

. After this step

o the ConfigurationServiceReference appears under Service References in the project,
and

o the app.config file is updated to include elements that can be used to instantiate the
proxy.

The following is a view of the configuration file (app.config):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.serviceModel>
<bindings>
<basicHttpBinding>
<binding name="BasicHttpBinding_IConfiguration">
<security mode="TransportCredentialOnly">
<transport clientCredentialType="Basic" />
</security>
</binding>
</basicHttpBinding>
</bindings>
<client>
<endpoint address="http://MiCC Enterprise-server:8524/Configuration/soap"

binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding_IConfiguration”

contract="ConfigurationServiceReference.IConfiguration"
name="BasicHttpBinding_IConfiguration" />

</client>

</system.serviceModel>

</configuration >

It shows the following endpoint information under the <client> element:

The endpoint that the proxy uses to access the service that is located at the following address:
http://MiCC Enterprise-server:8524/Configuration/soap.

The endpoint element specifies that the ConfigurationServiceReference.lConfiguration
service contract is used for communication between the proxy and the service while the
configured binding is the system-provided basicHttpBinding.

Web Services Integration Script Manager - User Guide

INSTANTIATING THE PROXY

After defining the proxy class, client code can be added to instantiate the proxy.
Instantiating the proxy consists of specifying the endpoint that the proxy uses to access the
service. An endpoint has an address, a binding and a contract, and each of these must be

specified in the process of instantiating the proxy.

This can be done by defining endpoints in code or using the configuration file (app.config) that
was updated or created together with the proxy class.

Instantiating the proxy using the application configuration file
The endpoint configuration name BasicHttpBinding_IConfiguration will be used as argument of
the proxy constructor so that proxy instance properties such as security mode and transport are

correctly set.

In addition, the remote address of the service may also be provided as argument of the proxy
constructor.

// Create a proxy with given client endpoint configuration.
proxy = new ConfigurationClient("BasicHttpBinding_IConfiguration");

Note that the configuration file will not be used by the class library project. You will need to add
the settings in the generated configuration file to the .config file for the executable that will call the
class library. See section 0.

Instantiating the proxy using configuration information specified in code

Instead of obtaining the binding definition from a .config file, it is also possible to set them in code
as in the following excerpt.

// Specify the binding to be used for the proxy.

BasicHttpBinding binding = new BasicHttpBinding();

binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;
binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.Basic;

// Specify the address to be used for the proxy.

EndpointAddress endpointAddress = new
EndpointAddress("http://localhost:8524/Configuration/soap");

// Create a proxy using the endpoint address and binding.
proxy = new ConfigurationClient(binding, endpointAddress);

It is usually the best practice to specify the binding and address information declaratively in
configuration rather than imperatively in code. Keeping the binding and addressing information
out of the code allows them to change without having to recompile or redeploy the application.

Web Services Integration Script Manager - User Guide

AUTHENTICATION

To determine what client credential type is required, examine the <bindings> section of the
configuration file. Within the section are binding elements that specify the security requirements.
Specifically, examine the <security> element of each binding. That element includes the mode
attribute, which you can set to one of three possible values (Message, Transport, or
TransportWithMessageCredential). The value of the attribute determines the mode, and the
mode determines which of the child elements is significant.

The <security> element can contain either a <transport> or <message> element, or both. The
significant element is the one that matches the security mode.

For example, the following code specifies that the security mode is "TransportCredentialOnly",
and the client credential type for the <transport> element is "Basic".

// Specify the binding to be used for the proxy.
BasicHttpBinding binding = new BasicHttpBinding();

binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;
binding.Security.Transport.ClientCredentialType = HttpClientCredentialType.Basic;

To be allowed to invoke Configuration Web Service methods, the client application must
provide valid MiCC Enterprise credentials.

To ensure that each method invocation is authenticated by the Configuration Web Service, the
ClientCredentials property of the proxy instance must be set.

// Specify the client credential value on the proxy in code
proxy.ClientCredentials.UserName.UserName = userName;
proxy.ClientCredentials.UserName.Password = password;

CALLING OPERATIONS

Once you have a proxy object created and configured, call operations in the same way that you
would if the object were local. Close the proxy once the operation invocations are completed.

// Making calls.

User user = proxy.GetUserByLogonId(tenantId, logonId);
Skill skill = proxy.GetSkillByName(tenantId, skillName);
SkillLevel skillLevel = new SkilllLevel();
skillLevel.SkillId = skill.Id;

skilllLevel.Level = level;
proxy.AddSkilllLevelToUser(tenantId, user.Id, skilllLevel);

//Closing the client gracefully closes the connection and cleans up resources.

proxy.Close();

The using directive (Imports in Visual Basic) at the beginning of the file enables you to use the
unqualified class names to reference the Configuration Web Service methods.

| using ConfigurationWebServiceClient.ConfigurationServiceReference;

Web Services Integration Script Manager - User Guide

EXCEPTION HANDLING

Exceptions can occur in a client application when opening or closing the proxy, or when using the
proxy to call operations. It is recommended at a minimum that applications expect to handle
possible System.TimeoutException and System.ServiceModel.CommunicationException
exceptions in addition to any System.ServiceModel.FaultException objects that may be
triggered by operations.

The recommended way to handle these exceptions is to surround the code that invokes proxy
methods with a try block and append a catch block for each potential exception.

try

{
// Client code using proxy

}

catch (TimeoutException timeProblem)

{
Console.WritelLine("The service operation timed out. " + timeProblem.Message);
proxy .Abort();
return 1;

}

catch (FaultException unknownFault)

{
Console.WriteLine("An unknown exception was received. " + unknownFault.Message);
proxy .Abort();
return 2;

}

catch (CommunicationException commProblem)

{
Console.WriteLine("There was a communication problem. " +

commProblem.Message + commProblem.StackTrace);

proxy.Abort();
return 3;

}

catch (Exception ex)

{
Console.WriteLine("An unknown exception was received. " + ex.Message);
proxy.Abort();
return 4;

¥

Web Services Integration Script Manager - User Guide

COMPILING THE CODE

{

{

using System;
using System.ServiceModel;
using ConfigurationWebServiceClient.ConfigurationServiceReference;

namespace ConfigurationWebServiceClient

public class Configuration

ConfigurationClient proxy;

public Configuration(string userName, string password)

{
// Specify the binding to be used for the proxy.
BasicHttpBinding binding = new BasicHttpBinding();
binding.Security.Mode = BasicHttpSecurityMode.TransportCredentialOnly;

binding.Security.Transport.ClientCredentialType =
HttpClientCredentialType.Basic;

// Specify the address to be used for the proxy.

EndpointAddress endpointAddress = new
EndpointAddress("http://localhost:8524/Configuration/soap");

// Create a proxy using the endpoint address and binding.

proxy = new ConfigurationClient(binding, endpointAddress);

// Create a proxy with given client endpoint configuration.

//proxy = new ConfigurationClient("BasicHttpBinding_IConfiguration");

// Specify the client credential value on the proxy in code
proxy.ClientCredentials.UserName.UserName = userName;

proxy.ClientCredentials.UserName.Password = password;

public int AddSkilllLevelToUser(int tenantId, string logonId, string skillName,
int level)

try

// Making calls.

User user = proxy.GetUserByLogonId(tenantId, logonId);
Skill skill = proxy.GetSkillByName(tenantId, skillName);
SkillLevel skilllevel = new Skilllevel();
skillLevel.SkillId = skill.Id;

skillLevel.Level = level;
proxy.AddSkilllLevelToUser(tenantId, user.Id, skilllLevel);

Web Services Integration Script Manager - User Guide

//Closing the client gracefully closes the connection and cleans up
resources.
proxy.Close();
return 0;
}
catch (TimeoutException timeProblem)
{
Console.WriteLine("The service operation timed out. " +
timeProblem.Message);
proxy.Abort();
return 1;
}
catch (FaultException unknownFault)
{
Console.WriteLine("An unknown exception was received. " +
unknownFault.Message);
proxy.Abort();
return 2;
}
catch (CommunicationException commProblem)
{
Console.WriteLine("There was a communication problem. " +
commProblem.Message + commProblem.StackTrace);
proxy.Abort();
return 3;
}
catch (Exception ex)
{
Console.WriteLine("An unknown exception was received. " + ex.Message);
proxy.Abort();
return 4;
}
}
}
¥

On the Build menu click Build Solution (or press CTRL+SHIFT+B).

TEST THE DLL

To test the ConfigurationWebServiceClient class library, you must have a project that uses it.
Use a VB.Net console application, so that you will be able to reuse your code in the Script
Manager VBScriptExecute block.

1. Start Visual Studio.

2. On the menu bar, choose File, New, and Project.
The New Project dialog box opens.

3. Expand Installed, expand Templates, and click Visual Basic to display all available

Web Services Integration Script Manager - User Guide

10

Visual Basic templates.
4. In the center section of the dialog, select Console Application.

5. In the Name box, specify a name for your project, for instance
TestConfigurationWebServiceClient.

6. Press the OK button.
The new project appears in Solution Explorer.

7. In Solution Explorer, right-click the References node underneath the
TestConfigurationWebServiceClient project, and click Add Reference.
The Add Reference dialog box opens.

8. Select the Browse tab, locate the folder where the ConfigurationWebServiceClient
library resides and select it.

9. Press the OK button.

10. After this step the ConfigurationWebServiceClient appears under References in the
project. You can then use the classes and methods of the library like you would use
those of the .NET Framework.

11. If Modulel.vb isn't open in the Code Editor, open the shortcut menu for Modulel.vb in
Solution Explorer, and then choose View Code.

12. Call the library class methods in your application.
Replace the contents of Modulel.vb with the following code :

Imports ConfigurationWebServiceClient

Module Modulel

Sub Main()

Dim adminLogonId As String = "Admin"
Dim password As String = "admin"

Dim tenantId As Long = -1

Dim userLogonId As String = "userl”
Dim skillName As String = "skilll"
Dim skillLevel As Long = 5

Dim result As Long

Dim conf As Configuration

'Initialize the class from the class library

conf = New Configuration(adminLogonId, password)

'Add SkilllLevelToUser
result = conf.AddSkilllLevelToUser(tenantId, userLogonId, skillName, skilllLevel)

Console.WriteLine("The result is {0:d}", result)

Console.WriteLine("Press [Enter] to close.")
Console.ReadLine()

End Sub

Web Services Integration Script Manager - User Guide

| End Module

13. Choose the F5 key to run the application.

WEBSERVICE.MFD

The script presented in Figure 1 demonstrates the inclusion of web service calls during a voice
call.

This tutorial emphasizes the use of the VBScriptExecute block.

Double-click on WebService.mfd to open the script below.

P -

nﬂ'\- T

B L 1 1]
Call .
Delivered Allocate Get Digit
Oin call T1I1= Cnfr‘ligih:t
delivered

Befare compiling this script, e
ConfigurationVW ebServiceClient DLL
must be created as described in the

This script handles invocation of web services methods. Its successive steps are the following:

VB Script
i a

i

8C

Play TTS

Success

kil

8o (

Play TTS

Failure

i1 </B aies Web Semvices Integration User Guide

and copied into the

<|nstall Dir=\ScriptManager'Bin

+v

Clear Call

directory.

Clear call

End

End

Figure 1. Web Services sample script

e Receive an incoming call.

e Allocate resources and answer call.

e Get digits entered by the caller.

11

Web Services Integration Script Manager - User Guide

12

e Call the web service operations.
e Play “success” in case of success, or
“failure” in case of error.

PREREQUISITES

Before running the script, the following actions must be taken on the production server:
e Copy the ConfigurationWebServiceClient DLL to <InstallDir>\ScriptManager\Bin directory.

o Ifin the ConfigurationWebServiceClient project, the proxy has been instantiated using the
configuration file, add the settings in the app.config file to the
<InstallDir>\ScriptManager\Bin\flowprocessor.exe.config file.

You may need to create this file if it doesn’t already exist.

SESSION VARIABLES
The following session variables are defined.

AdminLogonld
e Type: String.
e Dimension: Zero.
o Initial Value: “Admin” (without quotes).

Password
e Type: String.
e Dimension: Zero.
e Initial Value: “admin” (without quotes).

Tenantld
e Type: Long.
e Dimension: Zero.
e Initial Value: -1.

UserLogonld
e Type: String.
e Dimension: Zero.
e Initial Value: “user1” (without quotes).

SkillName
e Type: String.
e Dimension: Zero.
o Initial Value: “skill1” (without quotes).

e Type: String.

Web Services Integration Script Manager - User Guide

e Dimension: Zero.
e Initial Value:

ONCALLDELIVERED
Figure 2 shows how the Settings tab of the OnCallDelivered block is configured.

Specify the name of an existing BVD in the Monitored Device List.

OnCallDelivered Properties @

General Settings | Branches]

Manitored Device Lisk BVD 010"

Delivered Device: |

Time-outs
Initial [msz): |EDDD
Iriter-digit [ris): |2EIEIEI

Default Destination for Mon-handled Calls: |

Orphan Destination: |

0K | Cancel Apply Help

Figure 2. OnCallDelivered Settings

ALLOCATERESOURCE

Figure 3 shows how the Settings tab of the AllocateResource block is configured.

13

Web Services Integration Script Manager - User Guide

14

GETDIGITS

AllocateResource Properties @
"General Settings | Branches
Option
* Allocate Resources and Answer Call
" Allocate Rezources far Future Call
Device Mame; |
Resources
I Player I Recorder
v Tone Detector I Tone Generator
¥ Testto-Speech ™ Automatic Speech Fecognition
o o
Resource Charactenstic
Selection |US_ENGLISH |
Call Manager |Default Server j
User-defined Characteristic: |
QK | Cancel Apply Help

Figure 3: AllocateResource Settings

Figure 4 shows how the Settings tab of the GetDigits block is configured.

Web Services Integration Script Manager - User Guide

GetDigits Properties (=230

"General Settings | Branches I

— Meszages
|
— K.ey Detection Options
[Flush Pre-entered Keys
Finirnurm Digits: |1
F aximum Digits: |2
Termination Digit: I
Global Key: I
Digits Received: I@Digits
Termination Digit Received: I
 Time-outs
Iritial (rrs: 5000
Inter-digit [me]; |2DDD
Ma. of Retries: ||:|
Fietry Message: |

0K | Canced | mepy | Heb

Figure 4: GetDigits Settings

15

Web Services Integration Script Manager - User Guide

16

VBSCRIPTEXECUTE

Settings

Figure 5 shows how the Settings tab of the VBScriptExecute block is configured.

Tupe

Script:

VBScriptExecute Properties

"General Settings | Branches]

(" Binary Script

imports System -
imparts SMScriptBox
imports Configuratiort/'ebS erviceClient

<Sernalizable()» Public Clazs Script

Shared Sub Main(]

4

Dim logonld As Sting

Dim password Az Sting
Dimn tenantld Az [nteger
Dim uzerLogonld Az String
Dim skillMame &z Sting
Dim skillLevel &z Integer
Dim conf Az Configuration
Diimn result Az Long

m

'Get required zoript variables

logonld = FlowCaontest, Gety ariable]"@AdminLogonl ")
pazsward = FlowContert. Getariable[@ azsword"]
tenantld = FlowContext. Gef anable[@ T enantld")
uzerLogonld = FlowContest. GetWariable('@ zerLogonld
zkilMame = FlowContext. Gef/ariable[@5 kil ame""]
skilLevel = ClntFlowContest. Get ariable[Edigitz"])

Initialize the class from the class library

[T 3

Birary Script Mame:

Check Syntax Generate Binary

Reference Aszembly List: |I::'\F'rngram Files [8E1MMitelS oliduzhS cripth anager\Bit

oK | Cancel

Apply

Help

Figure 5. VBScriptExecute Settings

Web Services Integration Script Manager - User Guide

Here is the code inside the Script text field.

Imports System
Imports SMScriptBox
Imports ConfigurationWebServiceClient

<Serializable()> Public Class Script
Shared Sub Main()
Dim logonId As String
Dim password As String
Dim tenantId As Integer
Dim userLogonId As String
Dim skillName As String
Dim skilllLevel As Integer
Dim conf As Configuration
Dim result As Long
' Get required script variables
logonId = FlowContext.GetVariable("@AdminLogonId")
password = FlowContext.GetVariable("@Password")
tenantId = FlowContext.GetVariable("@TenantId")
userLogonId = FlowContext.GetVariable("@UserLogonId")
skillName = FlowContext.GetVariable("@SkillName")
skillLevel = CInt(FlowContext.GetVariable("@Digits"))
' Initialize the class from the class library
conf = New Configuration(logonId, password)
' Invoke web service method
result = conf.AddSkillLevelToUser(tenantId, userLogonId, skillName, skilllLevel)

' Set the result

FlowContext.SetResult(result)
End Sub

End Class

To invoke a web service from the VBScriptExecute block, the client DLL need to be referenced as in this
example above.

Branches

Figure 6 shows how the Branches tab of the VBScriptExecute block is configured.

17

Web Services Integration Script Manager - User Guide

VBScriptExecute Properties

' General I Settings Branches |

Branch Mare | Connecting Black
Failure Failure

Fetun 0 Success

Feturn 1 Failure

Fetumn 2 Failure

Fetumn 3 Failure

Feturn 4 Failure

Fetun 5

Fetun &

Fetun 7

Fetun 8

Fetun 3

‘ m J»

0K | Cancel Apply Help

Figure 6: VBScriptExecute Branches

18

Web Services Integration Script Manager - User Guide

VOICE PROMPT

One voice prompt is used in this script to play a message to the caller.
Make sure the voice prompt is available and is configured in OAS as a play message.

Table 1: Voice Prompt

SCRIPT MANAGER VARIABLE MESSAGEID SAMPLE VOICE PROMPT DESCRIPTION

Msg

9999 “Please enter the skill level”

USAGE

To test this sample script, perform the following steps.

Call the BVD number associated to the Service Access.
Specify the desired skill level.

Depending on the result of web service calls, the system then plays either “Success” , or
“Failure”.

Using MiCC Enterprise Configuration Manager, verify that the skill level of the specified user
has been changed.

19

. ®

m M I tel © Copyright 2014, Mitel Networks Corporation. All Rights Reserved. The Mitel word and logo are trademarks of Mitel Networks Corporation

. Any reference to third party trademarks are for reference only and Mitel makes no representation of ownership of these marks
mitel.com

Powering connections

	Introduction
	Sample script files

	Web Services in Script Manager
	Overview

	Tutorial
	Prerequisites
	Create a C# DLL using Visual Studio
	Create a C# Project
	Create a proxy class
	Instantiating the proxy
	Instantiating the proxy using the application configuration file
	Instantiating the proxy using configuration information specified in code

	Authentication
	Calling operations
	Exception handling
	Compiling the code

	Test the DLL
	WebService.mfd
	Prerequisites
	Session Variables
	OnCallDelivered
	AllocateResource
	GetDigits
	VBScriptExecute
	Settings

	Voice prompt
	Usage

