
Mitel MiContact Center Enterprise

 CHAT CONFIGURATION – OPERATING INSTRUCTIONS

 Release 9.3

NOTICE

The information contained in this document is believed to be accurate in all respects but is not warranted
by Mitel Networks™ Corporation (MITEL®). The information is subject to change without notice and
should not be construed in any way as a commitment by Mitel or any of its affiliates or subsidiaries. Mitel
and its affiliates and subsidiaries assume no responsibility for any errors or omissions in this document.
Revisions of this document or new editions of it may be issued to incorporate such changes.

No part of this document can be reproduced or transmitted in any form or by any means - electronic or

mechanical - for any purpose without written permission from Mitel Networks Corporation.

TRADEMARKS

The trademarks, service marks, logos and graphics (collectively "Trademarks") appearing on Mitel's

Internet sites or in its publications are registered and unregistered trademarks of Mitel Networks

Corporation (MNC) or its subsidiaries (collectively "Mitel") or others. Use of the Trademarks is prohibited

without the express consent from Mitel. Please contact our legal department at legal@mitel.com for

additional information. For a list of the worldwide Mitel Networks Corporation registered trademarks,

please refer to the website: http://www.mitel.com/trademarks.

Chat Configuration – Operating Instructions
Release 9.3 – February 2018

®,™ Trademark of Mitel Networks Corporation
© Copyright 2018 Mitel Networks Corporation

All rights reserved

http://www.mitel.com/trademarks

INTRODUCTION

MiCC Enterprise may be integrated with chat functionality allowing customers to request chat

sessions which will be routed to agents. This document will describe integrating the built in

customer chat client into your external Web site. Knowledge of basic Internet Web design and

HTML is assumed.

CUSTOMER CHAT CLIENT

Chat functionality may be integrated into your Web site using the stock chat client or you may

design your own.

STOCK CHAT CLIENT

During installation of MiCC Enterprise a CustomerChat Web application is added to the default

Web site of Internet Information Server. The CustomerChat Web application was built using

ASP.NET v4.0 and uses SignalR technology for communication between the client and server.

A typical scenario for invoking a chat session would be having a button on a page that requests

information from the customer such as their name, e-mail address and which department they

wish to chat with. Then, the chat page would be opened in a popup window with the necessary

arguments.

The URL for the stock chat client:

http://<WebServer[:port]>/customerchat/chat.aspx

The external Web server must have access to this URL. It is the responsibility of the Web Admin

for opening external access to the page and handling all security configuration.

Several URL arguments are required:

ARGUMENT REQUIRED PURPOSE

sessionid Yes Unique ID for this chat session. This can be any unique
character string such as a guid.

customername No Name of customer.

customerid No ID of customer. This may be used to tag the chat session
during archive operations.

email No E-mail address of the customer.

tenantid Yes Tenant ID of the MiCC Enterprise service group where the
chat session will be routed. This will be -1 for non-tenanted
MiCC Enterprise systems.

servicegroupid Yes ID of the service group where the chat session will be routed.
Either the servicegroupid or servicegroupname argument
must be specified.

servicegroupname Yes Name of the service group where the chat session will be
routed. Either the servicegroupid or servicegroupname
argument must be specified.

privatedata No Any character string that you wish to pass along to the agent.

Example Javascript opening the chat page in a popup window:

window.open(‘http://MICC
ENTERPRISEWEBSERVER/CustomerChat/Chat.aspx?sessionid={2C310076-91E7-4B8B-870D-
275B0BF23042}&customername=John&customerid=100&email=john@somecompany.com&tenantid
=-1&servicegroupname=Sales’);

The CustomerChat Web application also contains a default test page for invoking the Chat page.

Test arguments may be entered and then the Chat page invoked.

http://<WebServer[:port]>/customerchat/default.aspx

LOCALIZATION

The stock chat client may be localized into additional languages by creating language resource

files. To create an additional language, copy the file:

<InstallDir>\Services\Web\CustomerChat\App_LocalResources\Chat.aspx.resx

to a new file in the same folder using the following format:

Chat.aspx.<language>.resx

<language> should be the ISO 639 two-letter culture code and may contain an ISO 3166 two-

letter uppercase subculture. For example, to create a general language for French, create the

file:

Chat.aspx.fr.resx

To create a language for French with a subculture for Belgium, create the file:

Chat.aspx.fr-BE.resx

Chat.aspx.resx is an XML based language resource file. Be careful not to change the structure of

the file. The following text strings may be modified:

NAME PURPOSE

btnSendMessage.Text Text of the Send button.

Page.Title Title of the page.

JS.AgentJoined Message displayed when an agent joins the conversation.

JS.AgentLeft Message displayed when an agent leaves the conversation.

JS.AgentTyping Message displayed in the status area when the agent is typing.

JS.CallCenterClosed Message displayed when the call center is closed.

JS.ErrorRequestingChat Message displayed when an error occurs requesting the chat session.

JS.ErrorSendingMessage Message displayed when an error occurs sending the message to the agent.

Js.Queued Message displayed when waiting for an agent.

JS.SessionTimeout Message displayed when the chat session has timed out.

JS.Terminated Message displayed when the chat session has been terminated.

JS.EWT Status message showing estimated waiting time.

Note: Any placeholders such as {0} or {1} in the text strings must be maintained. The location in

the text string may be moved, but it must exist.

BROWSER SUPPORT

 Internet Explorer v9.0 or Later

 Current Version of Chrome

 Current Version of Firefox

Additional versions may be supported, however, only the current released version of Chrome and

Firefox at the time of MiCC Enterprise release have been tested.

IDLE TIMEOUTS

Settings are in place to control session idle timeouts. There is one setting which controls the

timeout on the chat client side and one setting at the server. The idle timeout will be the smaller

of the two values.

Chat Client

This is controlled by the IdleTimeout setting in the

<InstallDir>\Services\Web\CustomerChat\Web.config file. The value is specified in seconds. The

default is 300 seconds.

Server

This is controlled by the following registry entry:

Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\CCChat\Parameters

Value Name (REG_DWORD): CustomerTimeout

Value: Timeout in seconds. Default = 600 seconds.

ESTIMATED WAIT TIME

Estimated wait time can be displayed in the status area if enabled. This is controlled by the

ShowEWT setting in the <InstallDir>\Services\Web\CustomerChat\Web.config file. Value values

are true and false. The time is based on the estimated wait time at the time of queueing counting

down toward 0. The time is shown in minutes with a minimum of 1 minute if available. The

estimated wait time may not available based on traffic conditions of the Call Center. Refer to the

section on Real-Time Windows in the document 9_1551-LXA119154 – Calculation Methods for

Reports for the estimated wait time calculation.

RUNNING STANDALONE ON A PUBLIC FACING WEB SERVER (DMZ)

The CustomeChat Web application may be used on public facing Web Server (DMZ). The

following steps should be performed.

1. Install MiCC Enterprise on the DMZ.

a. Select Custom installation.

b. On the Select Features page, select only the Services/Web Services feature.

c. Set the Broker Location to the main MiCC Enterprise server.

d. Continue and complete the installation.

2. Remove unnecessary Web applications. The only necessary Web application is

CustomerChat. The additional Web applications may be removed, however, they will never

be used. If you wish to remove the Web applications, open IIS Manager and remove the

following applications under the Default Web Site:

MiCCEInstallation

RTI

scheduler

seceventws

seclogonws

secreportws

secsapicidriver

SolidusACD

WebAgent

WebApps

WebCallback

3. Run the MiCC Enterprise Setup Utility.

A. On the Web Server Location page, set the location to where the main MiCC Enterprise

Web Services are installed. This is typically the same as the main MiCC Enterprise

server. Set the appropriate options for connecting to the main MiCC Enterprise server

and Web Server.

4. Open necessary ports. The CustomerChat Web application connects to the Broker Service

and Chat Service on the main MiCC Enterprise server. The configured ports for these

services must be open and accessible by the DMZ.

5. Ensure machine name resolution. The CustomerChat Web application retrieves the location

of the Chat Service from the Broker Service. The location received is depending on how the

Chat Service registers itself with the Broker. Typically this is the simple machine name, but it

may also be a full qualified domain name or an IP address. The DMZ must be able to access

the Chat Service using that received location.

CUSTOM CHAT CLIENT

If the stock MiCC Enterprise Chat client does not suit your needs, you may create your own

client. A REST service has been exposed from the MiCC Enterprise Chat service running on the

MiCC Enterprise server. You may communicate with the service directly from client side script;

however, this would require opening access to the MiCC Enterprise Chat service which is

typically behind a firewall. A more typical scenario would be to communicate with the MiCC

Enterprise Chat service from a back-end Web application such as from the code-behind in an

ASP.NET application.

All requests to the Chat service use JSON data format and are made through the following URL:

http://<MiCCEServer[:port]>/chatservice/<Request>

For example:

http://MICC ENTERPRISESERVER:12616/ChatService/RequestChat

The default port for the Chat service is 12616, but this can be changed on the MiCC Enterprise

server through the MiCC Enterprise Setup Utility.

The following example shows calling the RequestChat method from Javascript using JQuery:

function RequestChatFromService()
{
 var requestParam = new Object();

 requestParam.SessionID = ‘{50B5D2FF-57BD-4948-A864-B044A6E9FEB7}’;
 requestParam.CustomerID = ‘100’;
 requestParam.CustomerName = ‘John’;
 requestParam.EmailAddress = ‘john@somecompany.com’;
 requestParam.TenantID = -1;
 requestParam.ServiceGroupID = 0;
 requestParam.ServiceGroupName = ‘Sales’;
 requestParam.PrivateData = ‘SomePrivateData’;

 var DTO = {‘request’ : requestParam};

 $.ajax({

http://solidusserver:12616/ChatService/RequestChat

 type: “POST”,
 contentType: “application/json; charset=utf-8”,
 url: “http://MICC ENTERPRISESERVER:12616/ChatService/RequestChat”,
 data: JSON.stringify(DTO),
 datatype: “json”,
 success:
 function(data)
 {
 return data.ChatID;
 }
 });
}

IDLE TIMEOUTS

An idle timeout scenario should be handled properly by the custom chat client to terminate the

session. There is still a server side timeout as a fail-safe procedure. See the IDLE TIMEOUTS

section for the stock chat client.

CHAT SERVICE API

Methods

All methods will throw fault exceptions on failure.

RequestChatResponse RequestChat(RequestChatRequest request)

Requests a chat session.

void LeaveChat(LeaveChatRequest request)

Leaves a chat session

void SendMessage(SendChatMessageRequest request)

Sends a message from the customer to the agent.

void SendTyping(SendTypingRequest request)

Sends a notification to the agent that the customer is typing.

GetEventsResponse GetEvents(GetEventsRequest request)

Gets pending events such as messages received from the agent.

GetQueueInfoResponse GetQueueInfo(GetQueueInfoRequest request)

Gets state information for a service group.

GetChatInfoResponse GetChatInfo(GetChatInfoRequest request)

Gets state information for a chat session.

Types

RequestChatRequest

NAME TYPE PURPOSE

SessionID string Unique ID of session. This may be used to tag the chat session
during archive operations.

CustomerID string ID of customer. This may be used to tag the chat session during
archive operations.

CustomerName string Name of customer.

EmailAddress string E-mail address of the customer.

TenantID int Tenant ID of the MiCC Enterprise service group where the chat
session will be routed. This will be -1 for non-tenanted MiCC
Enterprise systems.

ServiceGroupID int ID of the service group where the chat session will be routed.
Either ServiceGroupID or ServiceGroupName must be specified.

ServiceGroupName string Name of the service group where the chat session will be routed.
Either ServiceGroupID or ServiceGroupName must be specified.

PrivateData String Any character string that you wish to pass along to the agent. This
value will not be displayed in the Agent’s display, but it is provided
to the Agent Integration interface.

RequestChatResponse

NAME TYPE PURPOSE

ChatID string Contains the unique ID associated to the new chat session.

QueuePosition int Position in the queue.

EstimatedWaitTime int Estimated wait time in seconds or -1 if an estimate could not
be determined.

LeaveChatRequest

NAME TYPE PURPOSE

ChatID string Unique ID returned from the RequestChat method.

SendChatMessageRequest

NAME TYPE PURPOSE

ChatID string Unique ID returned from the RequestChat method.

Message string Message to send.

SendTypingRequest

NAME TYPE PURPOSE

ChatID string Unique ID returned from the RequestChat method.

GetEventsRequest

NAME TYPE PURPOSE

ChatID string Unique ID returned from the RequestChat method.

Timeout int Timeout in milliseconds to wait for events.

GetEventsResponse

NAME TYPE PURPOSE

Events List<ChatEvent> List of receieved events

GetChatInfoRequest

NAME TYPE PURPOSE

ChatID string Unique ID returned from the RequestChat method.

GetChatInfoResponse

NAME TYPE PURPOSE

State ChatState Current state.

QueuePosition int Position in the queue. Only applicable if State = Queued.

GetQueueInfoRequest

NAME TYPE PURPOSE

TenantID int Tenant ID of the MiCC Enterprise service. This will be -1 for non-
tenanted MiCC Enterprise systems.

ServiceGroupID int ID of the service group. Either ServiceGroupID or
ServiceGroupName must be specified.

ServiceGroupName string Name of the service group. Either ServiceGroupID or
ServiceGroupName must be specified.

GetQueueInfoResponse

NAME TYPE PURPOSE

EstimatedWaitTime int Estimated wait time in seconds or -1 if an estimate could not
be determined.

ChatEvent

NAME TYPE PURPOSE

EventType ChatEventType Type of the event. The type indicates what type of object will
be contained in the Data member.

Data object Event data. See ChatEventType.

ChatEventType (enum int)

NAME VALUE DATA OBJECT TYPE PURPOSE

AgentMessageReceived 0 AgentMessageReceivedEvent Message was received from agent.

AgentJoined 1 AgentJoinedEvent Agent has joined the conversation.

AgentLeft 2 AgentLeftEvent Agent has left the conversation.

AgentTyping 3 AgentTypingEvent Agent is typing.

ChatState 4 ChatStateEvent Chat state has changed.

AgentMessageReceivedEvent

NAME TYPE PURPOSE

ChatID string Unique ID of the chat session.

Name string Sender of the message.

Message string Message received.

TimeStamp DateTime Time the message was received.

AgentJoinedEvent

NAME TYPE PURPOSE

ChatID string Unique ID of the chat session.

Name string Name of the agent that joined the conversation.

AgentLeftEvent

NAME TYPE PURPOSE

ChatID string Unique ID of the chat session.

Name string Name of the agent that left the conversation.

AgentTypingEvent

NAME TYPE PURPOSE

ChatID string Unique ID of the chat session.

Name string Name of the agent that is typing.

ChatStateEvent

NAME TYPE PURPOSE

ChatID string Unique ID of the chat session.

State ChatState Current state.

QueuePosition int Position in the queue. Only applicable if State = Queued.

EstimatedWaitTime int Estimated wait time in seconds or -1 if an estimate could not
be determined. Only applicable if State = Queued.

ChatState (enum int)

NAME VALUE PURPOSE

Queued 0 Chat has been queued to a service group and is waiting for an agent to
be allocated.

Handling 1 Chat is being handled by an agent.

Terminated 2 Chat session has been terminated.

E-MAIL TRANSCRIPT

At the end of a chat session, the customer may be e-mailed a transcript of the conversation. This

can be invoked manually from the Agent Chat form or opened automatically when the form is

closed. Transcript properties are set on the Chat tab of the Service Group Properties in

Configuration Manager.

The transcript is only available to the agent if the Sender E-mail Address is specified for the

Service Group. The agent must also have the privilege to send e-mails.

If Open Transcript E-mail on Close is selected, the e-mail form with the transcript will be

automatically opened when the agent closes the chat session form.

A custom subject and template may be used for the transcript subject and e-mail body. If these

values are empty, a default subject and body will be used.

The transcript template may be any standard text base file (*.txt) or html format files (*.htm,

*.html). The filename must be entered in UNC format.

Both the subject and template file may contain placeholders which will be replaced by data

associated to the chat as well as the transcript itself. All identifiers are valid for the template file.

All identifiers except $Transcript$ are available for the subject.

It is important to ensure that replaceable identifiers are entered in a continuous string in the

template file. HTML editors such as Microsoft Word may split the text while inserting HTML

format tags. This will prevent the identifiers from being replaced. This may occur if text is

identified as a misspelled word. The underlining used in Microsoft Word to indicate the

misspelled word will be stored in the HTML file as formatting information. Always ensure that

replaceable identifiers are ignored for spell checking.

Replaceable Identifiers

IDENTIFIER REPLACEMENT

$Transcript$ Chat transcript

$Date$ Current date formatted using the short date format of the current
locale

$Time$ Current time formatted using the short time format of the current
locale

$Received$ Date and time the e-mail was received formatted using the short
date and short time formats of the current locale

$Received.Date$ Date the e-mail was received formatted using the short date format
of the current locale

$Received.Time$ Time the e-mail was received formatted using the short time format
of the current locale

$ServiceGroup$ Service group name

$ServiceGroup.Name$ Service group name

$ServiceGroup.Email$ Service group e-mail address.

$Agent$ Agent name

$Agent.Name$ Agent name

$Customer$ Customer name

$Customer.Name$ Customer name

$Customer.Email$ Customer e-mail address

 CHAT RESPONSES

A response file may be setup for each service group allowing the agents to select predefined

messages to be inserted into chat messages. If a response file is configured, a hierarchal list of

the responses is displayed in the agent chat form. Refer to the section on E-mail, Chat and SMS

Response Files in the document 3_1543-LXA119154 – Advanced Configurations for the

response file format.

	Introduction
	Customer Chat Client
	Stock Chat Client
	Localization
	Browser Support
	Idle Timeouts
	Estimated Wait Time
	Running Standalone on a Public Facing Web Server (DMZ)

	Custom Chat Client
	Idle Timeouts
	Chat Service API
	Methods
	Types

	E-mail Transcript
	Chat Responses

