

MiContact Center Enterprise

Open Application Server (OAS) - API
Programmer’s Guide

Release 9.6
Document Version 1.0

September 2022

Notices

The information contained in this document is believed to be accurate in all

respects but is not warranted by Mitel Networks™ Corporation (MITEL®).

The information is subject to change without notice and should not be construed

in any way as a commitment by Mitel or any of its affiliates or subsidiaries. Mitel

and its affiliates and subsidiaries assume no responsibility for any errors or

omissions in this document. Revisions of this document or new editions of it

may be issued to incorporate such changes. No part of this document can be

reproduced or transmitted in any form or by any means - electronic or

mechanical - for any purpose without written permission from Mitel Networks

Corporation.

Trademarks

The trademarks, service marks, logos and graphics (collectively “Trademarks”)

appearing on Mitel's Internet sites or in its publications are registered and

unregistered trademarks of Mitel Networks Corporation (MNC) or its

subsidiaries (collectively "Mitel") or others. Use of the Trademarks is prohibited

without the express consent from Mitel. Please contact our legal department at

legal@mitel.com for additional information. For a list of the worldwide Mitel

Networks Corporation registered trademarks, please refer to the website:

http://www.mitel.com/trademarks.

®,™ Trademark of Mitel Networks Corporation

© Copyright 2022, Mitel Networks Corporation All rights reserved

mailto:legal@mitel.com
mailto:legal@mitel.com
http://www.mitel.com/trademarks.

ABSTRACT

The Open Application Server (OAS) is an open, scalable platform on which Computer

Telephony Integration (CTI) media applications can be based. An easy to use call and media

control Application Programming Interface (API) enables applications to share network

resources while still reserving resources for mission critical media applications. The API is

based on the Novell NetWare Telephony Services API (TSAPI) and contains additional

functions that enhance the API with functionality not included in the standard TSAPI (for

example, media services). For general information about the API, please refer to NetWare®

Telephony Services Release 2 - Telephony Services Application Programming Interface

(TSAPI).

The Open Application Server API Programmer’s Guide describes the ETP extensions to TSAPI

provided by the OAS. In addition to the TSAPI programming interface, which incorporates the

following standards:

• ECMA (European Computer Manufacturers Association. ECMA is an international,
European-based industry association that focuses on the standardization of information and
communications systems.)

• CSTA (Computer-Supported Telecommunications Applications)

and the following services: Telephony Call Control Services

• Call/Device Monitoring Services

• Query Services

• the OAS API incorporates the following services: Media Control Services

• Virtual Device Services

• Inter-application Communication Device Services

HOW THIS GUIDE IS ORGANIZED

This guide is structured following the same principles as the TSAPI specification. For the

reader who is familiar with that specification, this simplifies finding information. The chapters

and appendices are:

• “Introduction” - Discusses the Open Application Server—its TSAPI foundation and the OAS
API product architecture.

• “Functional Call Model” - References the functional call model and terminology specific to
the OAS API.

• “Control Services” - References the control services that the OAS supports.

• “Switching Function Services” - Discusses the OAS’s Switching Function Services available
to control calls.

• “Status Reporting Services” - Specifies the status reporting functions and confirmation
events that differ from those specified by TSAPI. Describes OAS-specific unsolicited event
messages coming from the OAS system.

• “OAS Data Types” - References the data types used by the functions and messages
defined for the OAS API.

• “References”

• Appendix A, “TSAPI Services Supported” - Lists the TSAPI services and whether the OAS
supports them.

• Appendix B, “Universal Failure Events” – Describes the CSTA and ETP Universal Failure
Events.

• Appendix C, “ETP CSTA Private Data” - Discusses the private data mechanism, which
extends the standard features of CSTA to allow OAS applications to invoke OAS-specific
features.

CONVENTIONS

SERVICE FUNCTIONS VERSUS EVENTS

All OAS service functions start with etp and all OAS confirmation and unsolicited events start

with ETP. For example:

etpAllocateResources() (service function)

ETPAllocateResourcesConfEvent (confirmation event)

USE OF EMPHASIS

The conventions used in this reference to distinguish service function names, parameter

names, parameter values, message events, etc. are as follows:

This font is used for service function names and parameter values. For example, service function
names include etpPlay() and etpCollectDigits(). Sample parameter values are ETPCONFIRMATION

and ETP_MAX_DIGITS.

This font is used for parameter names. For example: acsHandle and invokeID.

This font is used for message events. For example: ETPPlayConfEvent.

This font is used for error messages. For example: ACSERR_BADHDL.

This font is used for programming statements and declarations. For example:

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpPlay (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

int messageID,

ETPPlayList_t *playList);

COMPANION REFERENCES

The Open Application Server API Programmer’s Guide points to other references for additional

information. When using this guide, you will also need the following:

• ApplicationLink, Application Programmer’s Guide. EN/LZT 1022273

• Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI). Novell, May 1995.

INTRODUCTION

THE TELEPHONY SERVICES API (TSAPI) FOUNDATION

The Telephony Services API (TSAPI) is a set of APIs that allows applications to monitor and

control devices in a switching domain to bring together the two most common pieces of

equipment on an end user's desktop—the telephone and computer. It supports telephony

control capabilities in a generic, switch independent way (e.g., supports PBXs from various

vendors).

TSAPI is based on international standards for Computer Telephony Integration (CTI) telephony

services. Specifically, the ECMA CTI standard definition of Computer- Supported

Telecommunications Applications (CSTA Phase 1) is the foundation for TSAPI. ECMA is an

international, European-based industry association that focuses on the standardization of

information and communications systems. The CSTA standard is a technical agreement

reached by an open, multi-vendor consortium of major switch and computer vendors. Since

CSTA services and protocol definitions are the basis for TSAPI, TSAPI provides a generic,

switch-independent API. The TSAPI programming interface definition incorporates ECMA

CSTA telephony call control services, call/device monitoring services, and query services.

Open Application Server (OAS) builds on the TSAPI foundation, extending its capabilities with

media services, virtual device functions, and other functionality. It allows applications to utilize

resources in a MX-ONE network in a cost efficient yet flexible way.

PURPOSE

This reference specifies the OAS APIs (i.e., the additions to TSAPI that provide the extended

functionality of the Open Application Server). The API is specified in terms of its services and C

programming language syntax. OAS API supports Microsoft Windows 7 and 10, Microsoft

Windows Server 2K12, 2K16 and 2K19.

For information regarding generic TSAPI services and syntax, please refer to Netware®

Telephone Services™ Release 2 - Telephony Services Application Program Interface (TSAPI).

FUNCTIONAL CALL MODEL

The Open Application Server API functional call model is the same as that for TSAPI. For

details, refer to Netware® Telephone Services™ Release 2 - Telephony Services Application

Program Interface (TSAPI).

CONTROL SERVICES

The Open Application Server supports the control services specified in Section 4, “Control

Services,” of the Netware® Telephony Services Release 2 - Telephony Services Application

Programming Interface (TSAPI).

SWITCHING FUNCTION SERVICES

Applications use the Switching Function Services available through the Open Application

Server API to control calls. For OAS, the Dialed Number Identification Service (DNIS) name will

be displayed for an ACD call when the dialed number value maps to a defined name; if there is

no defined name, the DNIS number will be provided.

This chapter discusses the following types of Switching Function Services:

• Physical and Logical Device Call Control Services

• Virtual Device Call Control Services

• Inter-application Communication Device Control Services

• Media Control Services

PHYSICAL AND LOGICAL DEVICE CALL CONTROL SERVICES

A physical device is one associated with a real telephone extension, whereas a logical device

is a software-defined device (within the switch) and is associated with an extension. Logical

devices include ACD Groups and CTI Groups.

The call control services supported by OAS for physical and logical devices can be divided into

three categories:

• Standard TSAPI services. These are a subset of TSAPI Release 2 supported by the
ApplicationLink product. See the ApplicationLink Application Programmer’s Guide for
details.

• Standard TSAPI services extended in OAS to provide enhanced functions. The extensions
are implemented by employing the private data mechanism provided in TSAPI. The
extensions are detailed in this section.

• OAS-specific services to provide enhanced functions. These services are detailed in this
section.

cstaDeflectCall()

The cstaDeflectCall() service redirects an Alerting or Connected call to a given number. When the
call is alerting at either an ACD or CTI group, the cstaDeflectCall() service is extended using the
private data mechanism to accept a retain position flag. On the cstaDeflectCall() service API call, the
ETP_PD_RetainPositionFlag private data can be passed to the OAS client library. Presence of the
private data on the cstaDeflectCall() signals OAS to deflect the call with the call’s position in the
queue retained. Absence of this parameter means that the switch does not retain the position of the
call in the queue.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this message. For
a complete description of the event structure, refer to Appendix C, “ETP CSTA Private Data,”
Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI), the ACS Data Types and CSTA Data Types
sections.

typedef struct ETP_PD_RetainPositionFlag_t {

char vendor[32];

unsigned short length;

} ETP_PD_RetainPositionFlag_t;

Parameters

vendor

Stores the manufacturer object identifier. For the ETP_PD_RetainPositionFlag, the sequence

is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x04, 0x0}

length

Length of the data portion of the private data structure that follows the length parameter. Since

there is no data portion, length must contain 0 (zero).

Comments

If the function returns an error with a cost code service busy, another service is trying to deflect

to the same destination. Retry; the request should be successful.

Note the following concerning the structure and parameters:

• It is assumed that the byte alignment for the structure is 1. In other words, there is no gap
between the vendor parameter and the length parameter.

• There is no data parameter.

• The retain position flag is valid only for calls on a CTI or ACD group, and when the
‘deflected to’ device is an analog, CTI or ACD device.

cstaMonitorDevice ()

The cstaMonitorDevice() service monitors the requested Device. On the cstaMonitorDevice()

service API call, the ETPTenantID_t is added to private data and can be passed to the OAS

client library.Presence of the private data on the cstaMonitorDevice () signals OAS to search

the device in the specified Tenant list.For more information, refer to Appendix C, "ETP CSTA

Private Data,"ApplicationLink Application Programmer's Guide, and Netware® Telephone

Services™ Release 2 - Telephony Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for his message.
For a complete description of the event structure, refer to Appendix C, “ETP CSTA Private Data,”
Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI), the ACS Data Types and CSTA Data Types
sections.

typedef struct ETPTenantID_t {

 TenantID_t TenantID;

} ETPTenantID_t;

Parameters for Private data

vendor

Stores the manufacturer object identifier. For the ETPTenantID, the sequence is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x05, 0x0}

length

Length of the data portion of the private data structure that follows the length parameter. Since

there is no data portion, length must contain 0 (zero).

Comments

If the function returns an error with a cause code as security violation, wrong tenant id is sent in

request.

Note the following concerning the structure and parameters:· It is assumed that the byte

alignment for the structure is 1. In other words, there is no gap between the vendor parameter

and the length parameter.

Sample code to fill in Tenant ID in private data:

int dataLen = sizeof(PrivateData_t)+sizeof(ETPTenantID_t);

ETPTenantID_t etpTID;

PrivateData_t *privData = (PrivateData_t*)malloc(dataLen);

memset((void*)&etpTID,0,sizeof(ETPTenantID_t));

strncpy(etpTID.TenantID, (LPCSTR)generalPage.m_tenantID,63);

memset((void*)privData, 0, dataLen);

memcpy((void*)privData->vendor,TenantVendorID,8); privData-

>length = sizeof(ETPTenantID_t)+1; memcpy((void*)privData-

>data, &etpTID, sizeof(ETPTenantID_t));

ret = MonitorDevice(handle, invokeID, &device, &filter, privData);

etpAssociateData()

The etpAssociateData() service associates/attaches data to a call so that subsequent unsolicited
events relating to the call contain the data.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpAssociateData (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

ETPAssociatedData_t *associatedData);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call to which resources are to be allocated.

The structure for the ConnectionID_t is

typedef struct ConnectionID_t {

long callID,

DeviceID_t deviceID,

ConnectionID_Device_t devIDType,

} ConnectionID_t;

Parameters

callID

Unique id used for the call.

deviceID

device identifier of the device.

devIDType

The four byte enum which specifies the type of device either STATIC or DYNAMIC.

associatedData

A pointer to the data to be associated with the call.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will

be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPAssociatedDataConfEvent message to ensure

that the service request has been acknowledged and processed by the server.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is valid for virtual devices as well as physical and logical devices. The unsolicited

events that support associated data are:

• CSTAConferencedEvent

• CSTAConnectionClearedEvent

• CSTADeliveredEvent

• CSTADivertedEvent

• CSTAEstablishedEvent

• CSTAQueuedEvent

• CSTATransferredEvent

ETPAssociateDataConfEvent

ETPAssociateDataConfEvent provides a positive response from the server for a previous

etpAssociateData() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

Union

{

Struct

{

InvokeID_t invokeID;

union

{

ETPAssociateDataConfEvent_t assocData;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPAssociateDataConfEvent_t {

Nulltype null;

} ETPAssociateDataConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ASSOCIATE_DATA_CONF, which identifies this message as an

ETPAssociateDataConfEvent.

invokeID

Specifies the function service request instance for the service, which was processed at the

server or switch. This identifier is provided to the application when a service request is made.

etpCancelCallback()

The etpCancelCallback() service allows an application to cancel a previously set callback on a

device. A specific callback can be canceled by including the called party device ID. If the called

party device ID is not included, then all callbacks on the device are removed.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpCancelCallback (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

DeviceID_t *callbackToCancel);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

A pointer to the device identifier of the device which originates the etpCancelCallback() service.

callbackToCancel

A pointer to the device identifier of the called party device. If the device identifier is not included

(i.e., the value of CallBackToCancel is null), all callbacks on the device are removed.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPCancelCallbackConfEvent message to ensure

that the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPCancelCallbackConfEvent

ETPCancelCallbackConfEvent provides a positive response from the server for a previous

etpCancelCallback() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPCancelCallbackConfEvent_t cancelCB;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPCancelCallbackConfEvent_t {

Nulltype null;

} ETPCancelCallbackConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_CANCEL_CALLBACK_CONF, which identifies this message as an

ETPCancelCallbackConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpDeflectCallWithData()

This function allows an application to deflect a call with user associated data. The user

associated data will be provided to the device to which the call is diverted in

CSTADeliveredEvent.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

 RetCode_t etpDeflectCallWithData (ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *deflectCall,

DeviceID_t *calledDevice

ETPAssociatedData_t *associatedData,

PrivateData_t *privateData);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

Deflectcall

A pointer to the connection identifier of the call to be deflected.

calledDevice

A pointer to the device identifier of device to which the call is to be deflected.

associatedData

A pointer to the data to be associated with the call.

privateData

Indicates the privateData.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPDeflectCallWithDataConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for calls on a virtual device.

Application can use this functionality to keep track of a call when it is deflected to another MX-

ONE node. To see this associated data, the deflected destination must be monitored by

another OAS or ApplicationLink.

ETPDeflectCallWithDataConfEvent

ETPDeflectCallWithDataConfEvent provides a positive response from the server for a

previous etpDeflectCallWithData() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPDeflectCallWithDataConfEvent_t assocData;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPDeflectCallWithDataConfEvent_t {

Nulltype null;

} ETPDeflectCallWithDataConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_DEFLECT_CALL_WITH_DATA_CONF, which identifies this message as an

ETPDeflectCallWithDataConfEvent.

invokeID

Specifies the function service request instance for the service, which was processed at the

server or switch. This identifier is provided to the application when a service request is made.

etpEnterAccountCode()

The etpEnterAccountCode() service associates an account code with either an active call in

speech or a new call that it starts. If the call is currently active (the device is in the Connected

state), the account code uses another line that appears on the telephone set. If the device is in

the Idle state, a line appearance will be selected, the account code dialed, and the line remains

in the Dial Tone state ready for manual dial or dial through a cstaMakeCall() service request.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpEnterAccountCode (ACSHandle_t

 acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

AccountCode_t accountCode);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call to which the account code is associated. Used

when the device is in the Connected state.

accountCode

A null terminated character string that contains the account code to be entered. The code is

market and system specific, and the maximum number of characters is 10.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPEnterAccountCodeConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle or Connected state.

ETPEnterAccountCodeConfEvent

ETPEnterAccountCodeConfEvent provides a positive response from the server for a

previous etpEnterAccountCode() request.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef
struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPEnterAccountCodeConfEvent_t

enterAccountCode;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPEnterAccountCodeConfEvent_t {

Nulltype null;

} ETPEnterAccountCodeConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ENTER_ACCOUNT_CODE_CONF, which identifies this message as an

ETPEnterAccountCodeConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpEnterAuthorizationCode()

The etpEnterAuthorizationCode() service allows an application to dial an authorization code on

an idle device.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpEnterAuthorizationCode (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

AccountCode_t authCode);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

A pointer to the device identifier of the device with which an authorization code will be

associated.

authCode

A null terminated character string that contains the authorization code to be entered. The code

is market and system specific, and the maximum number of characters is 10.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPEnterAuthorizationCodeConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPEnterAuthorizationCodeConfEvent

ETPEnterAuthorizationCodeConfEvent provides a positive response from the server for a

previous etpEnterAuthorizationCode() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPEnterAuthorizationCodeConfEvent_t enterAuthCode;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPEnterAuthorizationCodeConfEvent _t {

Nulltype null;

} ETPEnterAuthorizationCodeConfEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ENTER_AUTHORIZATION_CODE_CONF, which identifies this message as an

ETPEnterAuthorizationCodeConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpMessageDiversion()

The etpMessageDiversion() service allows an application to set or cancel diversion of a message

to a predefined destination for specified reasons when the device is in the Idle state.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpMessageDiversion (ACSHandle_t

 acsHandle, InvokeID_t

 invokeID, DeviceID_t

 *deviceID, Boolean

 divertMessage, Int

 diversionType, TimeOrDate_t

 timeOrDate);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

A pointer to the device identifier of the device to which diversion to a predefined destination is

to be set or canceled.

divertMessage

If set to true, diversion to a predefined destination is set. If set to false, message diversion is

canceled.

diversionType

Specifies the reason for the diversion. Values are between 0 and 9, and are system and market

specific.

timeOrDate

A null terminated 4-byte string that can contain date or time depending upon the reason

specified in diversionType. For example, if the reason were “Out for Jury Duty,” then the string

would contain the date; if the reason were “Out for Lunch,” then it would contain the time. The

string is system and market specific.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPMessageDiversionConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPMessageDiversionConfEvent

ETPMessageDiversionConfEvent provides a positive response from the server for a previous

etpMessageDiversion() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPMessageDiversionConfEvent_t msgDiversion;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPMessageDiversionConfEvent_t {

Nulltype null;

} ETPMessageDiversionConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_MESSAGE_DIVERSION_CONF, which identifies this message as an

TPMessageDiversionConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpPressProgrammableKey()

The etpPressProgrammableKey() service allows an application to press any programmable key

on the device by identifying the key number as defined by the MX-ONE telephone set key

numbering system.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpPressProgrammableKey (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

KeyNumber_t keyNumber);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

A pointer to the device identifier of the device on which the application will press the

programmable key.

keyNumber

The key to be pressed as defined by the MX-ONE telephone set key numbering system. Any

key can be pressed except digits, the transfer key, the conference key, and the clear key. Use

caution when invoking this service—the key numbering on different types of digital telephone

sets on the MX-ONE is not the same.

Return Values

This function returns the following values depending on whether the application is using library-

or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPPressProgrammableKeyConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPPressProgrammableKeyConfEvent

ETPPressProgrammableKeyConfEvent provides a positive response from the server for a

previous etpPressProgrammableKey() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPPressProgrammableKeyConfEvent_t pressProgKey;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPPressProgrammableKeyConfEvent _t {

Nulltype null;

} ETPPressProgrammableKeyConfEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_PRESS_PROGRAMMABLE_KEY_CONF, which identifies this message as an

ETPPressProgrammableKeyConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpSendDTMF()

The etpSendDTMF() service transmits a series of DTMF signals on an established call in the

Connected state.

Note: The etpSendDTMF() service is a Media Control Service as well as a

Physical and Logical Device Call Control Service

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpSendDTMF (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

DTMFList_t dtmfList);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call to which the DTMF signals are to be sent.

dtmfList

A null terminated string containing the list of DTMF digits to be sent. Valid values are 0, 1, 2, 3,

4, 5, 6, 7, 8, 9, *, #. The string can contain from 1 to 20 characters.

Return Values

This function returns the following values depending on whether the application is using library-

or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSendDTMFConfEvent message to ensure that

the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical or virtual device.

ETPSendDTMFConfEvent

ETPSendDTMFConfEvent provides a positive response from the server for a previous

etpSendDTMF() request.

Note: The etpSendDTMF() service is a Media Control Service as well as a

Physical and Logical Device Call Control Service.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPSendDTMFConfEvent_t sendDTMF;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPSendDTMFConfEvent_t {

Nulltype null;

} ETPSendDTMFConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SEND_DTMF_CONF, which identifies this message as an

ETPSendDTMFConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpSetACDGroupForward()

The etpSetACDGroupForward() service allows an application that is monitoring an Automatic Call

Distribution (ACD) supervisor to request to forward an ACD group to another destination.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpSetACDGroupForward (ACSHandle_t

acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

Boolean forwardACDGroup,

DeviceID_t *acdDeviceID,

DeviceID_t *fwdToDeviceID);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

A pointer to the device identifier of the device containing the ACD supervisor.

forwardACDGroup

If set to true, then the ACD group is forwarded to another destination. If set to false, then ACD

group forwarding is canceled.

acdDeviceID

A pointer to the device identifier of the device that contains the ACD group to be forwarded.

fwdToDeviceID

A pointer to the device identifier of the device to which the ACD group is to be forwarded.

Return Values

This function returns the following values depending on whether the application is using library-

or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a

positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSetACDGroupForwardConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a logical device in the Idle state.

ETPSetACDGroupForwardConfEvent

ETPSetACDGroupForwardConfEvent provides a positive response from the server for a

previous etpSetACDGroupForward() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPSetACDGroupForwardConfEvent_t setACDGrpFwd;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPSetACDGroupForwardConfEvent _t {

Nulltype null;

} ETPSetACDGroupForwardConfEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SET_ACD_GROUP_FORWARD_CONF, which identifies this message as an

ETPSetACDGroupForwardConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

VIRTUAL DEVICE CALL CONTROL SERVICES

This section defines the Call Control Services supported for all virtual device types. These

functions allow client applications to:

• Establish, control, and destroy calls at a virtual device

• Answer incoming calls at a virtual device

The following functions have additional functionality compared to how they work for the physical

device type as defined in the ApplicationLink Application Programmer’s Guide. They are

described in more detail below.

cstaAnswerCall()

cstaClearConnection()

cstaDeflectCall()/etpDeflectCallWithData()

cstaMakeCall()

The following functions are only supported for virtual devices, and are described in more detail

below:

etpClearCallInQueue()

etpJoinCalls()

etpSplitCalls()

Each function in this section has an associated confirmation event message as per standard

TSAPI services. See “Control Services” and “Status Reporting Services” respectively, in this

reference and in Netware® Telephony Services™ Release 2 - Telephony Services Application

Programming Interface (TSAPI) for more information on events.

cstaAnswerCall()

Virtual devices do not have the physical capabilities necessary to answer calls alerting at them.

Therefore, the cstaAnswerCall() service may only be invoked on calls alerting at virtual devices

after the devices have media resources allocated to them. Refer to etpAllocateResources() for

details.

cstaClearConnection()

The cstaClearConnection() releases the specified virtual device from the designated call. The

connection is left in the Null state. Additionally, the CSTA connection identifier provided in the

service request is released. A successful cstaClearConnection() service also deallocates the

resources allocated to that call.

cstaDeflectCall()/etpDeflectCallWithData

The cstaDeflectCall() and etpDeflectCallWithData() services release the specified virtual device

from the designated call. A successful cstaDeflectCall() or etpDeflectCallWithData() service also

deallocates the resources allocated to that call.

cstaMakeCall()

The cstaMakeCall() service originates a call from a device (the originator or calling device that

must be on the switch) to another device (the destination or called device). When the calling

device is a virtual device, the cstaMakeCall() service is extended using the private data

mechanism to accept a resource handle. When establishing an outbound call from a virtual

device, private data is set to the resource handle returned in the

ETPAllocateResourcesConfEvent message after resources are allocated. The resources

must not be attached to an existing call.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_ResourceHandle_t { char

 vendor[32]

unsigned short length;

ETPResourceHandle_t resourceHandle;

} ETP_PD_ResourceHandle_t;

typedef struct ETPResourceHandle_t {

ServerID_t resourceServer;

DeviceID_t resourceDevice;

DeviceID_t ownerDevice;

ResourceCharacteristic_t resourceId;

} ETPResourceHandle_t;

Parameters

vendor

Stores the manufacturer object identifier. For ETP_PD_ResourceHandle, the sequence is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x03, 0x0}

length

Length of the resource handle.

resourceHandle

A handle to some previously allocated resources.

resourceId

Id of the resource handle.

Comments

Virtual devices do not have the physical capabilities necessary to establish outbound calls from

them. To establish an outbound call from a virtual device, an application must first allocate

resources for it via the etpAllocateResources() service.

Note the following concerning the structure and parameters:

• The resource handle must immediately follow the length parameter.

• It is assumed that the byte alignment for the structure is 1. In other words, there is no gap
between vendor parameter and length parameter as well as length parameter and
resourceHandle parameter.

etpClearCallInQueue()

This etpClearCallInQueue () request allows a user to clear a call in a Queue when no media

resources are attached to the call.

Virtual devices do not have the physical capabilities necessary to answer calls alerting at them

until the necessary resource are allocated. At this time the call which is there in the queue can

be cleared using etpClearCallInQueue() request.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpClearCallInQueue (

ACSHandle_t hReq,

InvokeID_t invokeID,

ConnectionID_t* pQueuedCall);

Parameters

hReq

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

pQueuedCall

A pointer to the connection identifier of one of the queued calls.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPClearCallInQueueConfEvent message to ensure

that the service request has been acknowledged and processed by the OAS system.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

ETPClearCallInQueueConfEvent

ETPClearCallInQueueConfEvent provides a positive response from the server for a previous

etpClearCallInQueue() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPClearCallInQueueConfEvent_t clearCallInQueue;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPClearCallInQueueConfEvent_t{

Nulltype null;

} ETPClearCallInQueueConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ClEAR_CALL_IN_QUEUE_CONF, which identifies this message as an

ETPClearCallInQueueConfEvent.

invokeID

Specifies the function services request instance for the service that was processed at the

server or switch. This identifier is provided to the application when a service request is made.

etpJoinCalls()

The etpJoinCalls() service connects an inbound call in the Connected state with an outbound

call in the Connected or Alerting state at the same virtual device. In other words, the

etpJoinCalls() service connects the speech path between the two calls.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode _t etpJoinCalls (ACSHandle_t

 acsHandle,

InvokeID_t invokeID, ConnectionID_t

*firstConnection, ConnectionID_t

*secondConnection);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

firstConnection

A pointer to the connection identifier of one of the calls to be joined.

secondConnection

A pointer to the connection identifier of the call to be joined with the first call.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For

application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPJoinCallsConfEvent message to ensure that the

service request has been acknowledged and processed by the OAS system.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

Any combination of inbound and outbound calls may be joined together with the following

restrictions:

• Inbound calls must be in the Connected state.

• Outbound calls on a DSP Media Server must either be in the Connected or Alerting state.

• Outbound calls on an IP Media Server must be in the Connected state.

In addition, two calls at the same virtual device may be joined only if their call termination

points coexist within the same physical media server (refer to etpAllocateResources()).

Media activity cannot be initiated on a joined call.

A successful call to this function establishes a speech path between two calls at the same

virtual device.

S

C C C C

D

D

ETPJoinCallsConfEveBnetfore

After

ETPJoinCallsConfEvent provides a positive response from the server for a previous

etpJoinCalls() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union

{

struct

{

InvokeID_t invokeID;

union

{

ETPJoinCallsConfEvent_t joinCalls;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPJoinCallsConfEvent_t {

Nulltype null;

} ETPJoinCallsConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_JOIN_CALLS_CONF, which identifies this message as an

ETPJoinCallsConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpSplitCalls()

etpSplitCalls() service disconnects the speech path between two calls previously joined at the

same virtual device using the etpJoinCalls() service.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpSplitCalls (ACSHandle_t

 acsHandle,

InvokeID_t invokeID, ConnectionID_t

*firstConnection, ConnectionID_t

*secondConnection);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

firstConnection

A pointer to the connection identifier of one of the joined calls.

secondConnection

A pointer to the connection identifier of the call joined with the first call.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSplitCallsConfEvent message to ensure that the

service request has been acknowledged and processed by the OAS system.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

A successful call to this function disconnects the speech path between two calls that were

previously joined at the same virtual device using etpJoinCalls().

S

C C C C

D

Before After

D

Before

ETPSplitCallsConfEvent

ETPSplitCallsConfEvent provides a positive response from the server for a previous

etpSplitCalls() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct

{

InvokeID_t invokeID;

union

{

ETPSplitCallsConfEvent_t splitCalls;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPSplitCallsConfEvent_t {

Nulltype null;

} ETPSplitCallsConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SPLIT_CALLS_CONF, which identifies this message as an

ETPSplitCallsConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

INTER-APPLICATION COMMUNICATION DEVICE CONTROL

SERVICES

The Inter-application Communication Device Control Services allow applications to

communicate with each other. The applications use devices called Inter-application

Communication Devices (ICDs) to send and receive messages asynchronously. Applications

send messages to an ICD. To receive messages, an application must monitor an ICD and

receive the ETPReceivedMessageEvent unsolicited event.

The device identifier of an ICD must begin with the tilde (~) character. An ICD is created by an

application starting a monitor using cstaMonitorDevice(). If the ICD does not exist, it is created at

this time. When the application sends a message and the device exists, the ICD accepts the

message. If the device does not exist, a negative confirmation event is returned. Multiple

applications can receive messages from any ICD.

cstaMonitorDevice()

The cstaMonitorDevice() service initiates unsolicited event reporting from a device. An

application can receive messages from an ICD by monitoring it via this service. In the

cstaMonitorDevice() service API call, the ETP_PD_MonitorIcdFlag private data can be passed

to the OAS client library. Presence of private data in the cstaMonitorDevice() signals OAS to start

a monitor on an ICD and, if the device does not exist, the OAS dynamically creates the device.

Absence of this parameter means that if the device does not exist, the device will not be

created and the parameter will be considered an invalid device identifier.

For more information, refer to Appendix C, “ETP CSTA Private Data,” Application Application

Link Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_MonitorIcdFlag_t {

char vendor[32];

unsigned short length;

} ETP_PD_MonitorIcdFlag_t;

Parameters

vendor

Stores the manufacturer object identifier. For the ETP_PD_MonitorIcdFlag, the sequence is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x01, 0x0}

length

Length of the data portion of the private data structure that follows the length parameter. Since

there is no data portion, length must contain 0 (zero).

Comments

Note the following concerning the structure and parameters:

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap

between the vendor parameter and the length parameter.

There is no data parameter.

etpSendMessage()

The etpSendMessage() service sends a message to an Inter-application Communication Device

(ICD).

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpSendMessage (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

Message_t *message);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

A pointer to the device identifier of the ICD to which the message is sent. The ICD device

identifier must begin with the tilde (~) character.

message

A pointer to the message being sent on the ICD. This consists of the length of the message

(maximum of 512 bytes) and the message data.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSendMessageConfEvent message to ensure

that the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

ETPSendMessageConfEvent

ETPSendMessageConfEvent provides a positive response from the server for a previous

etpSendMessage() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle; EventClass_t

 eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPSendMessageConfEvent_t sendMessage;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPSendMessageConfEvent_t {

Nulltype null;

} ETPSendMessageConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SEND_MESSAGE_CONF, which identifies this message as an

ETPSendMessageConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

Comments

The confirmation event indicates that the ICD to which the message was sent exists; (i.e., that it

is being monitored). It does not, however, indicate the message has been received by any

monitoring application or not.

MEDIA CONTROL SERVICES

The Media Control Services allow applications to provide media functions on connections at

virtual devices only. Essentially, the application manipulates media resources to provide the

necessary media functions.

The preconditions under which it is valid to invoke any of the Media Control Services (except

for etpAllocateResources() and etpDeallocateResources()) are as follows:

• The target connection must contain a virtual device identifier.

• The virtual device’s local connection state must be Connected, i.e., local connection state of
CS_CONNECT.

• All the resources necessary to perform the requested function must have been allocated to the
target connection.

• There must be no pending media activity on the target connection.

All the Media Control Services (except for etpAllocateResources() and etpDeallocateResources())

merely initiate the execution of media functions. A returned confirmation event indicates the

requested function has initiated. Unsolicited events are generated during the execution of

media functions initiated by Media Control Services. An application must use the related

unsolicited events to track the execution of the requested media function.

etpAllocateResources()

The etpAllocateResources() service allocates the specified media resources to an existing call or

a future outbound call.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpAllocateResources (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

ConnectionID_t *futureJoinedCall,

ETPResourceList_t *resourceList,

ETPUserDefinedCharacteristics_t *userCharacteristics);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call to which resources are to be allocated. In the

case of allocating resources for a future call, the call identifier contained in this parameter must

be set to ETP_NULL_CALL_ID.

futureJoinedCall

This parameter is reserved for future functionality. It should be set to ETP_NULL_CALL_ID.

resourceList

A pointer to a list of the required resources to be allocated. A call termination point alone may

be allocated by setting resourceList with no resources (blank). The capabilities of each

resource type are as follows:

RESOURCE TYPE

IDENTIFIER CAPABILITY

asr Automatic speech recognition used to recognize spoken words

signalDetector Detect dual-tone multi-frequency (DTMF) digits or dialed pulse (DP) digits

signalGenerator Send DTMF digits

player Play pre-recorded sound specified as files or variables

recorder Records caller voice into a Sound Media Object

ttsPlayer Play text from TEXT file

Note: Player, asr and tts are language dependent.

userCharacteristics

A pointer to a null terminated string, containing up to

ETP_USER_DEFINED_CHARACTERISTIC_LENGTH characters, that specifies a list of user-defined

characteristics used as input to the resource allocation algorithm. When resource allocation is

requested, the resource allocation algorithm is invoked to determine from which CTI server the

system should obtain the requested resources. The value assigned to userCharacteristics is

dependent upon the system configuration data. userCharacteristics contains call characteristics

(specific characteristics of a call) and/or call requirements (requirements placed by a call on the

CTI server). The syntax of the userCharacteristics parameter is specified (using Backus-Naur

Form) as follows:

<user_characteristics> ::= <characteristic_expression> |

<characteristic_expression>,<user_characteristics>

<characteristic_expression> ::= <call_characteristic> | <call_requirement>

<call_characteristic> ::= <identifier>

<call_requirement> ::= <identifier>=<MANDATORY | PREFERRED>

<identifier> ::= <letter> | <digit> |

<other_character> |<value><letter>

| <value><digit> |

<value><other_character>

<value> ::= <letter> | <digit> |

<other_character> |<value><letter>

| <value><digit> |

<value><other_character>

<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |n | o | p | q | r | s | t | u | v | w | x
| y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S |
T |U | V | W | X | Y | Z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<other_character> ::= - | _

The example below contains two call characteristics (VIP_CUSTOMER and ROUTER_APP), a

mandatory call requirement (LARGE_SERVER), and a preferred call requirement (FAST_SERVER).

“VIP_CUSTOMER,FAST_SERVER=PREFERRED,ROUTER_APP,LARGE_SERVER=MANDATORY”

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPAllocateResourcesConfEvent message to

ensure that the service request has been acknowledged and processed by the server.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

Resources exist within physical media servers. When resources are successfully allocated to a

virtual device, a call termination point within one of the physical media servers is always

allocated. This applies to both existing calls and future calls. When resources are reallocated to

an existing call, the existing call termination point may be replaced with a new one within a

different physical media resource node.

In the case of allocating resources to an existing call, the resources are connected to the

specified connection. If the connection already has resources allocated to it, then a resource

reallocation occurs; (i.e., the existing resources are deallocated and the new ones allocated). If

the service does not complete successfully, then the previously allocated resources are

unchanged. The service may only be invoked on an existing connection when either the

connection is alerting with an inbound call or connected in speech with an inbound or outbound

call. Resource reallocation on a connection with an inbound alerting call is not permitted. If

resource reallocation is invoked on a connection having a media function active on it, then a

successful completion of the service results in the media function being terminated; otherwise

the media function is unaffected. Termination of an active media function as a result of

resource allocation will produce the appropriate media unsolicited events.

As described under cstaAnswerCall() and cstaMakeCall(), virtual devices have only limited

physical call handling capabilities. If an application wishes to perform any of the above services

on a virtual device, it must first allocate at least a call termination point to it. A call termination

point alone may be allocated by setting an empty resourceList parameter.

In the case of allocating resources to a future outbound call, the resources are merely reserved

so that they may be used later for establishing an outbound call from a virtual device. The

resource handle provided in ETPAllocateResourcesConfEvent is used in the cstaMakeCall()

service to establish the outbound call using the reserved resources. Resources allocated to a

future call must have a call established on them within a particular timeout period. If not, then the

resources are automatically deallocated and ETPResourceTimeoutEvent is sent. Resources

allocated to a future call may not be reallocated. To achieve this, an application must first deallocate

the resources via etpDeallocateResources() and then allocate new resources. When resources are

allocated for a future call but a cstaMakeCall() fails and a CSTAUniversalFailureEventConfEvent

is received, the allocated resources are not released and another cstaMakeCall() can be made with

the same resources. However, when a cstaMakeCall() fails and a cstaFailedEvent is received, the

resources allocated for the call are released.

When a call clears at a virtual device with resources allocated to it, the resources are

automatically deallocated.

For information about cstaAnswerCall() and cstaMakeCall(), refer to the ApplicationLink

Application Programmer’s Guide. The other services and confirmation events are described in

this chapter.

ETPAllocateResourcesConfEvent

ETPAllocateResourcesConfEvent provides a positive response from the server for a

previous etpAllocateResources() request, indicating the requested resources have been

successfully allocated.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPAllocateResourcesConfEvent_t allocateResources;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPAllocateResourcesConfEvent_t {

ETPResourceHandle_t resources;

} ETPAllocateResourcesConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ALLOCATE_RESOURCES_CONF, which identifies this message as an

ETPAllocateResourcesConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

resourceHandle

A handle to the allocated resources.

etpDeallocateResources()

The etpDeallocateResources() service deallocates previously allocated resources.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpDeallocateResources (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ETPResourceHandle_t *resources);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

resources

A handle to the resources to be deallocated. It is the handle returned in

ETPAllocateResourcesConfEvent after resources are allocated.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPDeallocateResourcesConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

The resources to be deallocated may or may not be attached to an existing call. Deallocating

resources from a call also deallocates the call termination point from the call.

ETPDeallocateResourcesConfEvent

ETPDeallocateResourcesConfEvent provides a positive response from the server for a

previous etpDeallocateResources() request, indicating that the resources have been successfully

deallocated.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPDeallocateResourcesConfEvent_t deallocateResources;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPDeallocateResourcesConfEvent_t {

Nulltype null;

} ETPDeallocateResourcesConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_DEALLOCATE_RESOURCES_CONF, which identifies this message as an

ETPDeallocateResourcesConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpCollectDigits()

The etpCollectDigits() service initiates the collection of DTMF or DP digits from an established

call in the Connected state. Optionally, it also provides the functions of the etpPlay() service.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpCollectDigits (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

ETPDigitDetectionType_t detectionType,

Boolean flushInputBuffer,

int initialTimeout,

int interDigitTimeout,

int maxNumberOfDigits,

ETPTerminationDigit_t terminationDigits;

Boolean interruptPlay,

int messageId,

ETPPlayList_t *playList);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call from which the digit collection is to be applied.

detectionType

Specifies the required type of digit detection. The options are:

• DTMF detection (ETP_DDT_DTMF)

• DP detection (ETP_DDT_DP)

• Simultaneous DTMF and DP detection (ETP_DDT_DTMFandDP)

• Unknown (ETP_DDT_UNKNOWN)

flushInputBuffer

If set to true, then any previously detected and buffered digits will be deleted before digit

detection is initiated; otherwise, the buffered digits are retained and considered as valid data.

initialTimeout

Specifies the timeout (in milliseconds) within which the first digit must be detected. The timeout

starts after the play function ends or, if no play function was requested, the timeout starts

immediately. Valid values are 0 to ETP_MAX_INIT_DIGIT_TIMEOUT, and ETP_NO_TIMEOUT.

interDigitTimeout

Specifies the timeout (in milliseconds) between which subsequent digits must be detected.

Valid values are 0 to ETP_MAX_INTER_DIGIT_TIMEOUT, and ETP_NO_TIMEOUT.

maxNumberOfDigits

Specifies the maximum number of digits to be collected after which digit detection is

terminated. The valid range is 1 to ETP_MAX_DIGITS.

terminationDigits

Specifies a null terminated string of digits.When one of these digits is detected, the collection is

terminated. The valid values for the digits are:

• DP: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’

• DTMF: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘*’, ‘#’

For both DP (Dial Pulse) and DTMF, the null string value signifies that no termination digit is

enabled.

interruptPlay

This parameter is only meaningful if a playList is provided. If interruptPlay is set to true, then

digit detection is enabled immediately and any detected digit will interrupt the play function. If

set to false, then digit detection is enabled upon completion of the play function.

messageId

Refer to etpPlay() for detailed information.

playList

Refer to etpPlay() for detailed information. A null value along with a zero value for the

messageId indicates that digit collection is to occur with no sound being played.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPCollectDigitsConfEvent message to ensure that

the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

Before this service can be completed successfully, the resources to be allocated must include

the resourceList parameter value signalDetector as per etpAllocateResources().

If a valid messageId or a non-null playList parameter are specified, then, in addition to the

above specified resource, the resources are required to be allocated as per etpPlay().

When resources containing a signal detector are allocated, the signal detector detects DTMF

digits entered by the caller even before etpCollectDigits() is invoked for the first time on those

resources. DP digit detection is turned off until an etpCollectDigits() function is requested with

detectionType set to ETP_DDT_DP or ETP_DDT_DTMFandDP.

When etpCollectDigits() is requested with a specific detectionType, the detectionType remains

in effect until the next request.

When etpCollectDigits() is requested with flushInputBuffer set to false, the digits already entered

by the caller and stored by the system will be returned in the ETPCollectDigitsEndedEvent

even if the digits do not match the new request’s detectionType.

A universal failure event can be received in case the request failed. The cause for the request

failure can be one of the following:

FAILURE RESPONSE CAUSE DESCRIPTION

UNKNOWN_MEDIA_PORT Invalid or unknown call resource.

WRONG_MEDIA_PORT_STATE If digit collector resource (or player resource if required) is in
the wrong state.

NO_RESOURCE_ALLOCATED No digit collector or player (if a play list or message is
specified) resource allocated

INVALID_MAX_NUMBER_DIGITS Max digits specified is out-of-range.

INVALID_PLAY_LIST Invalid play list specified.

INVALID_DIGIT_DETECTION_TYPE Requested digit detection type invalid. Valid values are
ETP_DDT_DTMF, ETP_DDT_DP or
ETP_DDT_DTMFandDP

ETPCollectDigitsConfEvent

ETPCollectDigitsConfEvent provides a positive response from the server for a previous

etpCollectDigits() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPCollectDigitsConfEvent_t collectDigits;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPCollectDigitsConfEvent_t {

Nulltype null;

} ETPCollectDigitsConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_COLLECT_DIGITS_CONF, which identifies this message as an

ETPCollectDigitsConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpDeleteMediaObject()

The etpDeleteMediaObject () service deletes a Media Object.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpDeleteMediaObject (ACSHandle_t

 acsHandle,

InvokeID_t invokeID,

DeviceID_t *deviceID,

ETPFileSpec_t *fileSpec);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

deviceID

Indicates from which media server is the Media Object to be deleted.

fileSpec

Full path and name of the Media Object to be deleted.

Return Values

This function returns the following values depending on whether the application is using library-

generated or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPDeleteMediaObjectConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

ETPDeleteMediaObjectConfEvent

ETPDeleteMediaObjectConfEvent provides a positive response from the server for a previous

etpDeleteMediaObject () request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPDeleteMediaObjectConfEvent_t deleteMediaObject;

} u;

} etpConfirmation;

} event

} ETPEvent_t;

typedef struct ETPDeleteMediaObjectConfEvent_t {

Nulltype null;

} ETPDeleteMediaObjectConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_DELETE_MEDIA_OBJECT_CONF, which identifies this message as an

ETPDeleteMediaObjectConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpPlay()

The etpPlay() service initiates the playing of a list of Media Objects on an established call in the

Connected state.

The play function has two behaviors:

• Simple Play Function: in this mode, all play objects are passed dynamically in a Play List.
To invoke this play mode, the Play Message ID passed in the Play request must be set to
zero

• Play Message Function: this mode initiates the playing of a pre-configured play message,
that consists of a sequence of static and dynamic media objects. To invoke this play mode,
the Play Message ID passed in the Play request must be set to a valid Message ID, as
configured in the OAS Configuration database.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpPlay (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

int messageId,

char *playList);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call to which the sound objects are to be played.

messageId

Identifies the particular message (specified by a number between 1 and 65535) within the

system configuration database to be played. The message contains static (specified value)

and/or dynamic (specified parameter) media objects.

playList

A pointer to a null terminated string containing up to ETP_PLAY_LIST_LENGTH characters

(including the null character) that specifies a list of the play objects to be played. The list may

contain play objects of the following types:

• TTS objects

• Text Media Objects: The application specifies the name and path of the text media

object to play

• Text String: A text string passed dynamically

• Sound objects

Pre-recorded sound file: <sound_media_object>. The application specifies the name and

path of the sound media object to play, the offset in milliseconds from the beginning of the

sound media object from which to begin play, and the duration in milliseconds of play within

the media object.

A positive, negative, or unsigned number containing up to

ETP_MAX_PLAY_DIGITS digits (not including the sign character):

<signed_number>. For example, a number between -999999999999999 and
+999999999999999.

DateDMY (day-month-year): <date_dmy> DateMDY

(month-day-year): <date_mdy> DateDM (day-month):

<date_dm> DateMD (month-day): <date_md>

Time12 (hour-minutes, 0:00 to 12:59 AM/PM): <time_hm> Time24

(hour-minutes, 0:00 to 23:59): <time_hm>

A string of characters up to ETP_MAX_PLAY_CHARACTER_STRING_SIZE

characters to be “spelled out” character-by-character:

<play_character_string>. The character string consists of 0-9, a-z, and A-Z.

Time duration in hours, minutes, and seconds (00:00:00 to 99:59:59): <duration>.

In the Simple Play Function mode, i.e. when the messageId is set to zero, the playList

(<play_object_list>) is specified using the following syntax (defined in Backus-Naur Form):

<play_object_list> ::= <play_sound_list> | <play_tts_list>

<play_sound_list> ::= <play_sound_object>; |

<play_sound_object>;<play_sound_list>

<play_sound_object> ::= SoundMediaObject=<sound_media_object> |
CharString=<play_character_string> | Number=<signed_number> |
DateDMY=<date_dmy> | DateMDY=<date_mdy> | DateDM=<date_dm>
| DateMD=<date_md> | Time12=<time_hm> | Time24=<time_hm> |
Duration=<duration>

<play_tts_object> ::= TtsFile=<tts_ media_object > | TtsString=<tts_string>

<tts_media_object> ::= <media_object_spec>

<tts_string> ::= <tts_character> | <tts_character><tts_string>

<sound_media_object> ::= <media_object_spec>,<offset_milliseconds>,

<duration_millisconds>

<offset_milliseconds> ::= <number>

<duration_milliseconds> ::= <number>

<media_object_spec> ::= <media_object> |

<media_container><media_object>

<media_object> ::= <character_string>

<media_container> ::= <character_string>: |

<character_string>:<media_container>

<signed_number> ::= <number> | +<number> | -<number>

<number> ::= <digit> | <digit><number>

<date_dmy> ::= <digit><digit>-<digit><digit>-

<digit><digit><digit><digit>

Valid values are those of valid dates in day-month-year format.

<date_mdy> ::= <digit><digit>/<digit><digit>/

<digit><digit><digit><digit>

Valid values are those of valid dates in month-day-year format.

<date_dm> ::= <digit><digit>-<digit><digit>

Valid values are those of valid dates in day-month format.

<date_md> ::= <digit><digit>/<digit><digit>

Valid values are those of valid dates in month-day format.

<time_hm> ::= <digit><digit>:<digit><digit>

Valid values are those of valid time, 00:00 to 23:59.

<duration> ::= <digit><digit>:<digit><digit>:<digit><digit>

Valid values are those of valid hours, minutes and seconds, 00:00:00 to
99:59:59.

<character_string> ::= <character><character_string>

<character> ::= <letter> | <digit> | <other_character>

<play_character_string> ::= <play_character><play_character_string>

<tts_character> ::= ASCII characters, as supported by the TTS

resources

<letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |n | o | p | q | r | s | t | u | v | w | x
| y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S |
T |U | V | W | X | Y | Z

<play_character> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |n | o | p | q | r | s | t | u | v | w | x
| y | z | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S |
T |U | V | W | X | Y | Z |0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Some letters may not be valid for certain languages.

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<other_character> ::= - | _

The following is an example specification of a list of sound objects:

 “SoundMediaObject=EnglishVoices:phone_number_is,0,0; CharString=8425006;”

Invoking etpPlay() on the above list will first play the entire (since an offset of 0 and
duration of 0 are specified) pre-recorded sound file “EnglishVoices:phone_number_is”
followed by the character string “8425006.”

In the Play Message Function mode, i.e. when the messageId is set to a valid, non-
zero value, the playList (<play_object_list>) is specified using the following syntax
(defined in Backus-Naur Form):

<play_object_parameter_list> ::= <play_sound_parameter_objects> |

<play_tts_parameter_objects>

<play_sound_parameter_objects

>

::= <play_sound_parameter_object>; |

<play_sound_parameter_object>;

<play_sound_parameter_ objects>

<play_tts_parameter_objects> ::= <play_tts_parameter_object>; |

<play_tts_parameter_object>;

<play_tts_parameter_ objects>

<play_sound_parameter_object> ::= <sound_media_object> |

<play_character_string> |

<signed_number> |

<number> | <date_dmy> |

<date_mdy> | <date_dm> | <date_md> | <time_hm> |

<time_hm> | <duration>

<sound_media_object >

<signed_number>

<number>

<date_dmy>

<date_mdy>

<date_dm>

<date_md>

<time_12>

<time_24>

<duration>

<tts_media_object>

<tts_string>

(Same as described in previous table)

The following is an example of a play message entry in the configuration database. Note the

following concerning the “Media Object Value” column:

• For static objects, the value is the name or value of the sound object to be played.

• For dynamic objects, the value indicates the position of the media object in the playList
(which matches the parameter number in the selected messageId).

Note: This sound media object (Account_number_is) is specified in the play

message as a relative path (relative to the default media container

\EnglishPrompts\, which in turn is relative to the root container path <installation

folder>\OAS\root_container.

1. The character string passed as the first element of the PlayList (ABC456) as “A B C four five
six.”

2. The sound stored in the media object:

<installation folder>\OAS\root_container\ EnglishPrompts\Your_balance_is,0,0 (0,0 means play the entire file)

3. The sound stored in the media object:

<installation folder>\OAS\root_container\ EnglishPrompts\Your_balance_is,0,0 (0,0 means play the entire file)

Note: This sound media object (Your_balance_is) is specified in the play message

as a relative path (relative to the default media container \EnglishPrompts\, which in

turn is relative to the root container path <installation folder>\OAS\root_container).

1. The number passed as the second element of the playList (123) as “one hundred twenty
three.”

2. The sound stored in the media object

<installation folder>\OAS\root_container\US_currency\Dollars_and,0,0 (0,0 means play the entire file)

Note: This sound media object (\US_currency\Dollars_and) is specified in the play

message as a full path (relative to the root container path <installation

folder>\OAS\root_container).

1. The number passed in the third element of playList (78) as “seventy eight.”

2. The sound stored in the media object:

<installation folder>\OAS\root_container\US_currency\Cents,0,0 (0,0 means play the entire file)

Note: This sound media object (\US_currency\Cents_and) is specified in the play

message as a full path (relative to the root container path <installation

folder>\OAS\root_container).

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPPlayConfEvent message to ensure that the

service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

If a playList contains any combination of sound objects, a player resource must be allocated. If

it contains any TTS objects, a ttsPlayer must be allocated.

Messages are configured and contained within the system configuration database. Each

message consists of a series of pre-recorded sound or text objects. The database specifies the

order in which the objects are to be played. These objects are either specified directly in the

database (static) or by the parameter passed by the application (dynamic).

ETPPlayConfEvent

ETPPlayConfEvent provides a positive response from the server for a previous etpPlay()

request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPPlayConfEvent_t play;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPPlayConfEvent_t

 { Nulltype null;

} ETPPlayConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_PLAY_CONF, which identifies this message as an ETPPlayConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpRecognize()

The etpRecognize() service initiates Automatic Speech Recognition on an established call in the

Connected state. Optionally, it also provides the functions of the etpPlay() service.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpRecognize (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

ETPGrammar *grammar,

Int initialTimeout,

Int finalTimeout,

Int maxTimeout,

int numberOfResults,

short interuptPlay,

short flushInputBuffer,

ETPCallLogging_t logging,

int messageId,

ETPPlayList_t *playList);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call from which the digit collection is to be applied.

grammar

String containing the name and path of the Grammar to be used for the recognition operation

initialTimeout

Specifies the initial silence timeout (in milliseconds) within which an utterance must be

detected. The timeout starts after the play function ends or, if no message is to be played,

immediately. Valid values are ETP_ASR_MIN_INIT_TIMEOUT to ETP_ASR_MAX_INIT_TIMEOUT.

finalTimeout

Specifies the silence timeout (in milliseconds)after the final utterance to indicate completion of

recognition. Valid values are ETP_ASR_MIN_FINAL_TIMEOUT to ETP_ASR_MAX_FINAL_TIMEOUT.

maxTimeout

Specifies the maximum time (including the play function time, if applicable), where the

recognize function is active. Valid values are ETP_ASR_MIN_MAXIMUM_TIMEOUT to

ETP_ASR_MAX_MAXIMUM_TIMEOUT.

numberOfResults

Number of top choices to be returned by the Engine. Valid values are from – 1 to

ETP_MAX_SPEECH_RESULTS.

interruptPlay

It is only meaningful if a play function is invoked. If interruptPlay is set to true, then the play

function will be interrupted if:

• an utterance is detected, in which case word recognition is enabled immediately

OR

• A DTMF tone is detected, in which case the word recognition is ended with a cause
ETP_MEC_INTERRUPTED_BY_DIGIT.

If interruptPlay is set to false, then word recognition is enabled upon completion of the play

function.

flushInputBuffer

Clear the DTMF buffer when the function is started. If this flag is set to false and one or more

DTFM digits were stored in the buffer, then recognize functions will end as soon as it is started

with cause ETP_MEC_INTERRUPTED_BY_DIGIT.

logging

Specifies whether the caller utterance should be recorded. Valid values are: 0 = no recording,

1 = record utterances.

messageId

Refer to etpPlay() for detailed information.

playList

Refer to etpPlay() for detailed information. A null value along with a zero value for the

messageId indicates that digit collection is to occur with no sound being played.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPRecognizeConfEvent message to ensure that

the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

Before this service can be completed successfully, the resources to be allocated must include

the resourceList parameter value asr, and optionally a signalDetector if DTMF are also to be

detected as per etpAllocateResources().

If a valid messageId or a non-null playList parameter are specified, then, in addition to the

above specified resource, the resources are required to be allocated as per etpPlay().

See etpCollectDigits() for details on digit collection behavior when a signal detector has been

allocated. If no signal detector has been allocated, then any digits entered should be ignored.

ETPRecognizeConfEvent

ETPRecognizeConfEvent provides a positive response from the server for a previous

etpRecognize() request.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef
struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPRecognizeConfEvent_t recognize;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPRecognizeConfEvent _t {

Nulltype null;

} ETPRecognizeConfEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_RECOGNIZE_CONF, which identifies this message as an ETPRecognize

ConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

etpRecord()

The etpRecord() service initiates the recording of a sound object on an established call in the

Connected state.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h> RetCode_t

etpRecord (

ACSHandle_t acsHandle,

InvokeID_t invokeID,

ConnectionID_t *call,

long maximumDuration, long

 minimumDuration,

long silenceThreshold,

Boolean stopOnDigitDetection,

ETPFileSpec_t *fileSpec,

int beepFlag,

ETPMediaObjectsEncodingTypes_t mediaObjectCodingType, int

 overwriteFlag);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

call

A pointer to the connection identifier of the call to which the sound objects are to be played.

maximumDuration

The maximum duration, in milliseconds, allowed to record.

minimumDuration

If the recording function is terminated before the specified minimum duration (in milliseconds),

e.g. caller hangs up, or silence detected, then recording function is considered to have failed.

silenceThreshold

If silence is detected for at least that duration (specified in milliseconds, the recording function

is terminated.

stopOnDigitDetection

When this parameter’s value is set to true, the recording will be terminated when a DTMF digit

is detected. A signal detector must be already allocated before this function is called. The digit

buffer will be cleared when this is set to TRUE.

fileSpec

This is the name and path of the Media Object where the recording is to be stored. This is

optionally specified by the application. If the name is not specified by the application, then a

Media Object name will be assigned by the Media Server and, that Media Object will be

created in the Media Container set by the etpSetDefaultContainerPath, or the System default

Container Path, if the etpSetDefaultContainerPath was not requested for the current call.

beepFlag

If this paramater is set to true, the caller will hear a beep before the recording starts.

mediaObjectCodingType

Indicates the format in which the recorded voice should be encoded.

overwriteFlag

If this paramter is set to true, and the Media Object in which to store the recording already

exists, then the recording will overwrite the old recording in that Media Object. Otherwise the

function will fail.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPRecordEvent message to ensure that the service

request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

A universal failure event can be received in case the request failed. The cause for the request

failure can be one of the following:

RESPONSE CAUSE DESCRIPTION

UNKNOWN_MEDIA_PORT If no associated call with the request

NO_RESOURCE_ALLOCATED No recorder or digit collector (if ‘stop on digit detection’ is set)
resource allocated

WRONG_MEDIA_PORT_STATE If the recorder resource or associated call resource is not in the
correct state for the request

INVALID_MEDIA_OBJECT Improper file spec.

INVALID_MAX_DURATION Maximum duration setting is out-of-range or is less than the
minimum duration setting.

INVALID_MIN_DURATION Minimum duration setting is out-of-range.

INVALID_SILENCE_THRESHOLD Silence threshold setting is out-of-range.

ETPRecordConfEvent

ETPRecordConfEvent provides a positive response from the server for a previous etpRecord()

request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPRecordConfEvent_t record;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPRecordConfEvent_t {

DeviceID_t mediaRepositoryId;

ETPFileSpec_t fileSpec;

} ETPRecordConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_RECORD_CONF, which identifies this message as an ETPRecordConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

mediaRepositoryId

Indicates the ID of the Media Repository.

fileSpec

Full name/path of created Media Object.

etpSetDefaultContainerPath()

The etpSetDefaultContainerPath () service sets default container path to be appended to the

beginning of each SoundMediaObject that starts with a colon (:) in any Media Functions such

as etpPlay, etpPlayMessage, etpCollectWords, etc. The new value applies until another

etpSetDefaultContainerPath or etpAllocateResource is called.

Syntax

#include <acs.h>

#include <csta.h>

#include <etp.h>

RetCode_t etpSetDefaultContainerPath (ACSHandle_t

 acsHandle,

InvokeID_t invokeID,

ETPResrouceHandle_t *resources,

ETPDefaultContainerPath_t *path);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the

invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated

identifiers.

resources

A handle to which the default container path is to be set. It is the handle returned in

ETPAllocateResourcesConfEvent after resources are allocated.

path

A null terminated string containing the new media container path to be set.

Return Values

This function returns the following values, depending on whether the application is using

library- or application-generated invoke identifiers:

• Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

• Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSetDefaultContainerPathConfEvent message to

ensure that the service request has been acknowledged and processed by the server and

switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED

A previously active ACS Stream has been abnormally aborted.

Comments

The new value applies until another etpSetDefaultContainerPath() or etpAllocateResource() is

called. Upon successful etpAllocateResource(), the default container path is set to “User:”.

ETPSetDefaultContainerPathConfEvent

ETPSetDefaultContainerPathConfEvent provides a positive response from the server for a previous

etpSetDefaultContainerPath() request, indicating that the default container path has been

successfully set. The default container path will be prepended to the beginning of each

SoundMediaobject that starts with a colon (:) in a Media Function such as etpPlay,

etpPlayMessage, etpCollectwords, etc.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef
struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

InvokeID_t invokeID;

union {

ETPSetDefaultContainerConfEvent_t allocateResources;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPSetDefaultContainerConfEvent_t {

Nulltype null;

} ETPSetDefaultContainerConfEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SET_DEFAULT_CONTAINER_CONF, which identifies this message as an

ETPSetDefaultContainerPathConfEvent.

invokeID

Specifies the function service request instance for the service that was processed at the server

or switch. This identifier is provided to the application when a service request is made.

STATUS REPORTING SERVICES

This chapter includes descriptions of all OAS-extended CSTA unsolicited events as well as

OAS-specific unsolicited events coming from the OAS system. In addition to the events

described here, all events supported by the ApplicationLink product are also supported. See

the ApplicationLink Application Programmer’s Guide for details.

This chapter includes:

• Common Call Event Reports

• Inter-application Communication Device Event Reports

• Media Service Event Reports

COMMON CALL EVENT REPORTS

This section covers the OAS-extended CSTA unsolicited events and OAS-specific unsolicited

events that can occur as a result of call activity on a device. Unless otherwise stated, the

events are relevant to all types of devices. The events provide the application with call status

information that can be used by the application in a variety of ways.

The following unsolicited events have additional functionality compared to how they are defined

in ApplicationLink Application Programmer’s Guide and Netware® Telephone Services™

Release 2 - Telephony Services Application Program Interface (TSAPI). They are described in

more detail below.

• CSTAConferencedEvent

• CSTAConnectionClearedEvent

• CSTADeliveredEvent

• CSTADivertedEvent

• CSTAEstablishedEvent

• CSTAQueuedEvent

• CSTATransferredEvent

CSTAConferencedEvent

The CSTAConferencedEvent report indicates that two separate calls have been conferenced

(merged) into a single call. This event is extended using the private data mechanism to accept

ETP_PD_AssociatedDataInfo. This is the data previously associated with the call via the

etpAssociateData() service. For more information, refer to Appendix C, “ETP CSTA Private Data,”

ApplicationLink Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 -

Telephony Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t {

char vendor[32]; unsigned

short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap

between the vendor parameter and the length parameter as well as the length parameter and

the associatedData parameter.

CSTAConnectionClearedEvent

The CSTAConnectionClearedEvent report indicates that a device associated with a call

disconnected or is dropped from the call. This event is extended using the private data

mechanism to accept ETP_PD_AssociatedDataInfo. This is the data previously associated

with the call via the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,”ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t {

char vendor[32]; unsigned

short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap

between the vendor parameter and the length parameter as well as the length parameter and

the associatedData parameter.

CSTADeliveredEvent

The CSTADeliveredEvent report provides information about a call that is alerting (i.e., ringing)

at a specific device. This event is extended using the private data mechanism to accept

ETP_PD_AssociatedDataInfo. This is the data previously associated with the call via the

etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,”ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t {

char vendor[32]; unsigned

short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap

between the vendor parameter and the length parameter as well as the length parameter and

the associatedData parameter.

CSTADivertedEvent

The CSTADivertedEvent report identifies a call that has been deflected or diverted from a

monitored device. This event is extended using the private data mechanism to accept

ETP_PD_AssociatedDataInfo. This is the data previously associated with the call via the

etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,”ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t char

 vendor[32];

unsigned short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter. It is assumed that the byte

alignment for the structure is 1. In other words, there is no gap between the vendor parameter

and the length parameter as well as the length parameter and the associatedData parameter.

CSTAEstablishedEvent

The CSTAEstablishedEvent report indicates that a device connects to a call. This event is

extended using the private data mechanism to accept ETP_PD_AssociatedDataInfo. This is

the data previously associated with the call via the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t { char

 vendor[32]; unsigned

short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap

between the vendor parameter and the length parameter as well as the length parameter and

the associatedData parameter.

CSTAQueuedEvent

The CSTAQueuedEvent report indicates that a call has been queued at an Automatic Call

Distribution (ACD) group device. This event is extended using the private data mechanism to

accept ETP_PD_AssociatedDataInfo. This is the data previously associated with the call via

the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t {

char vendor[32]; unsigned

short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter. It is assumed that the byte

alignment for the structure is 1. In other words, there is no gap between the vendor parameter

and the length parameter as well as the length parameter and the associatedData parameter.

CSTATransferredEvent

The CSTATransferredEvent report indicates that an existing call was transferred to another

device and the device that transferred the call is no longer part of the call (the transferring

device has been dropped from the call). This event is extended using the private data

mechanism to accept ETP_PD_AssociatedDataInfo. This is the data previously associated

with the call via the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink

Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this

message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA

Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release

2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA

Data Types sections.

typedef struct ETP_PD_AssociatedDataInfo_t {

char vendor[32]; unsigned

short length;

ETPAssociatedData_t associatedData;

} ETP_PD_AssociatedDataInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}

length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter. It is assumed that the byte

alignment for the structure is 1. In other words, there is no gap between the vendor parameter

and the length parameter as well as the length parameter and the associatedData parameter.

INTER-APPLICATION COMMUNICATION DEVICE EVENT REPORTS

This section covers the unsolicited event reports that can occur as a result of monitoring Inter-

application Communication Devices (ICDs).

ETPReceivedMessageEvent

A monitoring application receives the unsolicited ETPReceivedMessageEvent report when a

message is sent on an ICD via the etpSendMessage() service.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t ;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPReceivedMessageEvent _t receivedMessage;

} u;

} ETPUnsolicitedEvent;

} event;

} ETPEvent_t;

typedef struct ETPReceivedMessageEvent_t {

Message_t message;

} ETPReceivedMessageEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECEIVED_MESSAGE, which identifies this message as an

ETPReceivedMessageEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

message

The message received from the monitored ICD. It consists of the length of the message and

the message data itself.

Comments

Since applications on different platforms use different formats, the interpretation of the data is

the responsibility of the applications.

MEDIA SERVICE EVENTS REPORTS

This section covers the unsolicited events that can occur as a result of media activity on a

monitored virtual device. The events provide the application with media status information that

can be used by the application in a variety of ways.

ETPCollectDigitsEndedEvent

The ETPCollectDigitsEndedEvent report indicates that digit collection has ended.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPCollectDigitsEndedEvent_t collectDigitsEnded;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPCollectDigitsEndedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

char detectedTerminationDigit;

ETPDigitsType_t digitsType;

ETPDigitsList_t collectedDigits;

} ETPCollectDigitsEndedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_COLLECT_DIGITS_ENDED, which identifies this message as an

ETPCollectDigitsEndedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where digit collection ended.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION

ETP_MEC_INITIAL_TIMEOUT No digits entered prior to initial timeout.

ETP_MEC_INTER_DIGIT_TIMEOUT Interdigit timeout expired.

ETP_MEC_MAXIMUM_DIGITS Maximum digits entered.

ETP_MEC_TERMINATION_DIGIT Termination digit entered.

ETP_MEC_DISCONNECT Call disconnected during collect digits.

detectedTerminationDigits

Indicates which one of the Termination digits specified in the Collect Digits request was

detected if any. If no Termination Digits were detected, this parameter is set to null.

digitsType

Specifies the type of digits detected. The valid types are:

• DTMF digits (ETP_DDT_DTMF)

• DP digits (ETP_DDT_DP)

• DTMF and DP digits (ETP_DDT_DTMFandDP)

• Unknown digit type (ETP_DDT_UNKNOWN), which occurs under the following conditions:

• When a call arrives at a media server and if the user entered DTMF or DP digits before

the first etpCollectDigits() function is called, these digits are stored in the media server

buffer without indication of their type (i.e., DTMF or DP).

• When a caller does not input digits before the initialTimeout occurs.

collectedDigits

A null terminated string containing the collected digits (if any), including the termination digit (if

any). Each digit is represented by its corresponding character.

Comments

This event is generated after any OAS service that initiates the collection of digits from a call

and the collection is successful.

ETPCollectDigitsFailedEvent

The ETPCollectDigitsFailedEvent report indicates that digit collection has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPCollectDigitsFailedEvent_t

collectDigitsFailed;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPCollectDigitsFailedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

} ETPCollectDigitsFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_COLLECT_DIGITS_FAILED, which identifies this message as an

ETPCollectDigitsFailedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call on which digit collection failed.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION

ETP_MEC_PLAY_FAILED Attempt to play fails.

ETP_MEC_INTERNAL_ERROR Dialogic error attempting to start collecting digits.

Comments

This event is generated after any OAS service that initiates the collection of digits from a call

and the collection has failed.

ETPCollectDigitsStartedEvent

The ETPCollectDigitsStartedEvent report indicates that digit collection has started.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef
struct {

ACSHandle_t acsHandle; EventClass_t

 eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPCollectDigitsStartedEvent_t

collectDigitsStarted;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPCollectDigitsStartedEvent_t {

ConnectionID_t call;

} ETPCollectDigitsStartedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_COLLECT_DIGITS_STARTED, which identifies this message as an

ETPCollectDigitsStartedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where digit collection started.

Comments

This event is generated after any OAS service that initiates the collection of digits from a call.

ETPDeleteMediaObjectCompletedEvent

The ETPDeleteMediaObjectCompletedEvent report indicates that a Media Object has been

deleted.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPDeleteMediaObjectCompletedEvent_t mediaObjectDeleted;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPDeleteMediaObjectCompletedEvent_t

{

ETPFileSpec_t mediaObjectName; } ETPDeleteMediaObjectCompletedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_MEDIA_OBJECT_DELETED, which identifies this message as an

ETPDeleteMediaObjectCompletedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established

association.

mediaObjectName

The name of the Media Object which was deleted successfully.

Comments

This event is generated after any OAS service that initiates the deletion of a Media Object from

a Media Repository and the deletion is successful.

The Media Repository in which the Media Object deletion was requested, must be monitored by

the application in order for that application to receive this unsolicited event.

ETPDeleteMediaObjectFailedEvent

The ETPDeleteMediaObjectFailedEvent report indicates that deletion of a Media Object from

a Media Repository has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPDeleteMediaObjectFailedEvent_t mediaObjectDeleteFailed;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPDeleteMediaObjectFailedEvent_t{

ETPFileSpec_t mediaObjectName;

ETPEventCause_t cause;

} ETPDeleteMediaObjectFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_MEDIA_OBJECT_DELETE_FAILED, which identifies this message as an

ETPDeleteMediaObjectFailedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established

association.

mediaObjectName

The name of the Media Object which deletion has failed.

cause

The reason for this event.

Comments

This event is generated after any OAS service that initiates the deletion of a Media Object from

a Media Repository and the deletion has failed.

The Media Repository in which the Media Object deletion was requested, must be monitored by

the application in order for that application to receive this unsolicited event.

ETPMediaObjectCreatedEvent

The ETPMediaObjectCreatedEvent report indicates that a Media Object has been created in

a Media Repository.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef
struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union { ETPMediaObjectCreatedEvent_tmediaObjectCreated;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPMediaObjectCreatedEvent_t{

ETPFileSpec_t mediaObjectName;

ETPEventCause_t cause;

} ETPMediaObjectCreatedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_MEDIA_OBJECT_CREATED, which identifies this message as an

ETPMediaObjectCreatedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established

association.

mediaObjectName

The name of the Media Object which was created.

cause

The reason for this event.

Comments

This event is generated after any OAS service that creates a Media Object, e.g. an etpRecord()

request.

The Media Repository in which the Media Object is created, must be monitored by the

application in order for that application to receive this unsolicited event.

ETPPlayEndedEvent

The ETPPlayEndedEvent report indicates that the playing of either media objects or a

message on a connection has ended.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle; EventClass_t

 eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPPlayEndedEvent_t playEnded;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPPlayEndedInfo_t {

int interruptedElementIndex;

int interruptedOffset;

} ETPPlayEndedInfo_t;

typedef struct ETPPlayEndedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

ETPPlayEndedInfo_t info;

} ETPPlayEndedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_PLAY_ENDED, which identifies this message as an ETPPlayEndedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where the playing of sound ended.

cause

The reason for this event.

info

Provides supplementary information when sound playing ends or is interrupted. It can consist

of two pieces of information.

• interruptedElementIndex. An index to the last element or the element that was interrupted
(the first element being given an index of 0). The element is either a sound object in a play
list or an entry (static or dynamic) in a play message.

• interruptedOffset. The offset in milliseconds from the start of the play list where the play
function ended or was terminated.

Comments

This event is generated after any OAS service that initiates the playing of sound on a call and

the playing is successful.

ETPPlayFailedEvent

The ETPPlayFailedEvent report indicates that the playing of either sound objects or a

message on a connection has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPPlayFailedEvent_t playFailed;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPPlayFailedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

int invalidElementIndex;

} ETPPlayFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_PLAY_FAILED, which identifies this message as an ETPPlayFailedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where the playing of sound has failed.

cause

The reason for this event.

invalidElementIndex

Provides the supplementary information when an invalid sound element is detected.

It provides an index to the invalid element (the first element being given an index of

0). The element is either a media object in a play list or a variable in a message.

Comments

This event is generated after any OAS service that initiates the playing of sound on a call
and the playing has failed.

ETPPlayStartedEvent

The ETPPlayStartedEvent report indicates that the playing of either sound objects or a

message on a connection has begun.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPPlayStartedEvent_t

playStarted;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPPlayStartedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

} ETPPlayStartedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_PLAY_STARTED, which identifies this message as an ETPPlayStartedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call that has sound being played on it.

cause

The reason for this event.

Comments

This event is generated after any OAS service that initiates the playing of sound on a call.

ETPRecognizeEndedEvent

The ETPRecognizeEndedEvent report indicates that etpRecognize request has ended

successfully.

This event contains the Speech Recognition results which consist of the following inforation

• Speech results

• Interpretation of each result

• Natural Language information for each interpretation

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPRecognizeEndedEvent_t *recognizeEnded;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPRecognizeSpeechResult_t{

char szSpeech[ETP_MAX_SPEECH_RESULT_LENGTH];

int nScore;

short nFirstInterpIndex;

// index into stInterps[] of first

// interpretation (a speech result can have

// multiple interpretations.

// nFirstInterpIndex

// points to the first one in the chain.

// See next section for discussion of

//stInterps[]).

short nNumberOfInterps;

// the number of successive interpretations

// (starting with

// nFirstInterpIndex) in this speech result

} ETPRecognizeSpeechResult_t;

typedef struct ETPInterpretation_t

// "Interpretation". This is something like:

// "command" "call" 10

// "person" "john doe" 10

// "department" "marketing" 10

// "phone" "2675" 10

{

short nFirstNlResult;

// index into stNlResults of first NL result in the

// interpretation (an interpretation can have

multiple NL

// results. nFirstNlResult points to the first one in the

// chain. See next section for discussion of

stNlResults

short nNumberOfNlResults; // the number of successive

//NL results (starting with

// nFirstNlResult) in this

interpretation

} ETPInterpretation_t;

typedef struct ETPRecognizeNlResult_t{

char szSlot[ETP_MAX_SLOT_LENGTH];

char szSlotValue[ETP_MAX_SLOT_VALUE_LENGTH];

int nScore;

} ETPRecognizeNlResult_t;

typedef struct ETPRecognizeEndedEvent_t {

ConnectionID_t call;

short nNumberOfSpeechResults;

ETPRecognizeSpeechResult_t stSpeechResults[ETP_MAX_SPEECH_RESULTS];

ETPInterpretation_t stInterps[ETP_MAX_INTERPS]; ETPRecognizeNlResult_t

stNlResults[ETP_MAX_NL_RESULTS];

ETPEventCause_t cause;

Boolean bExceededMaxSpeechResults;

Boolean bExceededMaxInterps; Boolean

 bExceededMaxNlResults;

Boolean bExceededMaxSpeechResultLength;

Boolean bExceededMaxSlotLength; Boolean

 bExceededMaxSlotValueLength;

} ETPRecognizeEndedEvent_t;

Note: the ETPRecognizeEndedEvent_t member (see ETPRecognizeEndedEvent_t

*recognizeEnded above) of the ETPEvent_t is declared as a pointer unlike other

structures in this union. In the interest of communications efficiency, it was decided

to make it a pointer since this is a very large structure

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECOGNIZE_ENDED, which identifies this message as an

ETPRecognizeEndedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call on which collection of words ended.

nNumberOfSpeechResults

Number of results returned by the ASR engine.

stSpeechResults[ETP_MAX_SPEECH_RESULTS]

List of transcriptions of each speech recognition result. Includes index into stInterps array.

stInterps[ETP_MAX_INTERPS]

Each speech recognition result can have multiple NL interpretations. Each entry in this array

corresponds to a speech result has a starting index and range in the stNlResults array.

stNlResults[ETP_MAX_NL_RESULTS]

Each entry contains a slot, slot value and score. A subset of entries in this list is associated

with each speech recognition result.

cause

ETP_MEC_COMPLETED

bExceededMaxSpeechResults

Set to true if the stSpeechResults array has been filled up and there were more speech

results. Subsequent speech results and interpretations have been ignored.

bExceededMaxInterps

Set to true if the stInterps array is filled up. Further speech results can be added to the speech

results list but will have no interpretations or NL results.

bExceededMaxNlResults

Set to true if the stNlResults array is filled up. Further speech results can be added to the

speech results list but will have no NL results.

bExceededMaxSpeechResultLength

Set to true if a speech result string length exceeds the results field size

(ETP_MAX_SPEECH_RESULT_LENGTH). The string has been truncated.

bExceededMaxSlotLength

Set to true if a slot string length exceeds the results field size (ETP_MAX_SLOT_LENGTH).

The string has been truncated.

bExceededMaxSlotValueLength

Set to true if a slot value string length exceeds the results field size

(ETP_MAX_SLOT_VALUE_LENGTH). The string has been truncated.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the

speech recognition is successful.

ETPRecognizeFailedEvent

The ETPRecognizeFailedEvent report indicates that etpRecognize request has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPRecognizeFailedEvent_t recognizeFailed;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPRecognizeFailedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

Boolean bExceededMaxSpeechResults;

Boolean bExceededMaxInterps;

Boolean bExceededMaxNlResults;

Boolean bExceededMaxSpeechResultLength;

Boolean bExceededMaxSlotLength;

Boolean bExceededMaxSlotValueLength;

} ETPRecognizeFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECOGNIZE_FAILED, which identifies this message as an

ETPRecognizeFailedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where collection of words failed.

cause

The reason for this event.

bExceededMaxSpeechResults

Set to true if the stSpeechResults array has been filled up in building the related

ETPRecognizeEndedEvent event and there were more speech results.

bExceededMaxInterps

Set to true if the stInterps array has been filled up in building the related

ETPRecognizeEndedEvent event.

bExceededMaxNlResults

Set to true if the stNlResults array has been filled up in building the related

ETPRecognizeEndedEvent event.

bExceededMaxSpeechResultLength

Set to true if a speech result string length exceeds the results field size

(ETP_MAX_SPEECH_RESULT_LENGTH). The string has been truncated.

bExceededMaxSlotLength

Set to true if a slot string length exceeds the results field size (ETP_MAX_SLOT_LENGTH) in

building the related ETPRecognizeEndedEvent event.

bExceededMaxSlotValueLength

Set to true if a slot value string length exceeds the results field size

(ETP_MAX_SLOT_VALUE_LENGTH) in building the related ETPRecognizeEndedEvent

event.

EVENT CAUSE DESCRIPTION

ETP_MEC_STOPPED Sent when the media server stops recognition:

when the player fails at some point

when get a clear call and the ASR state is processing or
idle

ETP_MEC_INTERRUPTED_BY_DIGIT When the recognize process is interrupted by DTMF

ETP_MEC_NO_SPEECH When a stream ended message is

received and we haven’t detected the start of speech.

ETP_MEC_TOO_MUCH_SPEECH When a stream ended message is received and we haven’t
detected the end of speech (a “SpeechEnded” event).

ETP_MEC_FAILED Other recognition failure (Nuance Rec

Client will log the cause).

ETP_MEC_RECOGNITION_REJECTED When you get a recognized event but the result code is
‘Reject’.

ETP_MEC_RECOGNITION_TOO_SLO W When you get a recognized event but the result code is
‘TooSlowTimeout’.

ETP_MEC_SPEECH_TOO_EARLY When you get a recognized event but the result code is
‘SpeechTooEarly’.

ETP_MEC_INVALID_GRAMMAR Attempting to start recognition processing at the engine
fails due to ‘unknown grammar’.

ETP_MEC_NOT_RECOGNIZED When the final timeout is reached, the ASR engine will try
to match 'all' received utterances with the Grammar. If it
cannot make a match, it will return Not Recognized.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the

speech recognition has failed.

ETPRecognizeStartedEvent

The ETPRecognizeStartedEvent report indicates that etpRecognize request has started.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPRecognizeStartedEvent_t recognizeStarted;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPRecognizeStartedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

} ETPRecognizeStartedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECOGNIZE_STARTED, which identifies this message as an

ETPRecognizeStartedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where the collection of words started.

cause

ETP_MEC_SUCCESSFUL.

Comments

This event is generated after any OAS service has initiated the etpRecognize request.

ETPRecordEndedEvent

The ETPRecordEndedEvent report indicates that the recording of a media object has ended,

that the recorded duration exceeds the ‘minimumDuration’ value specified in the etpRecord()

request, and that a file containing the recorded sound was created

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPRecordEndedEvent_t recordEnded;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPRecordEndedEvent_t

{

ConnectionID_t call;

DeviceID_t mediaRepositoryId;

ETPFileSpec_t mediaObjectName; long

 duration;

ETPEventCause_t cause;

} ETPRecordEndedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECORD_ENDED, which identifies this message as an ETPRecordEndedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established

association.

call

The connection identifier of the call where the recording ended.

mediaRepositoryId

The cross reference ID of the Media Repository where the recording is stored

mediaObjectName

The name and path of the Media Object where the recording is stored

Duration

Time duration of play recording.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION

ETP_MEC_DETECTED_DIGIT Digit detected during recording
ETP_MEC_DISCONNECT Call cleared during recording
ETP_MEC_MAXIMUM_DURATION Maximum recording duration reached
ETP_MEC_RESOURCE_
REALLOCATION

Resource reallocated during recording

ETP_MEC_SILENCE_DURATION Maximum silence detected during recording

Comments

This event is generated after any OAS service that initiates the recording of sound on a call

and the recording is successful.

ETPRecordFailedEvent

The ETPRecordFailedEvent report indicates that the recording of a sound object on a

connection has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPRecordFailedEvent_t recordFailed;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPRecordFailedEvent_t

{

ConnectionID_t call;

DeviceID_t mediaRepositoryId;

ETPEventCause_t cause;

} ETPRecordFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECORD_FAILED, which identifies this message as an ETPRecordFailedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established

association.

call

The connection identifier of the call where the recording of sound has failed.

mediaRepositoryId

The cross reference ID of the Media Repository where the recording is stored.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION

ETP_MEC_CLOSE_MEDIA_ OBJECT_FAILED Error closing recorded file

ETP_MEC_INTERNAL_ERROR Attempt to open output file or recording started
then failed – either due to Dialogic error

ETP_MEC_INVALID_MEDIA_
OBJECT_ENCODING_TYPE

Invalid media type specified

ETP_MEC_MEDIA_OBJECT_ ALREADY_EXISTS File exists and no overwrite flag

ETP_MEC_INVALID_MEDIA_ OBJECT Invalid path or filename.

ETP_MEC_MINIMUM_ DURATION Recording ended before minimum duration, due
to:

Digit detected

Call cleared

Maximum silence detected

ETP_MEC_UNKNOWN Error detected by Dialogic

Comments

This event is generated after any OAS service that initiates the recording of sound on a call

and the recording has failed.

ETPRecordStartedEvent

The ETPRecordStartedEvent report indicates that the Recording of either sound objects or a

message on a connection has begun.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass;

EventType_t eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPRecordStartedEvent_t RecordStarted;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPRecordStartedEvent_t

{

ConnectionID_t call;

DeviceID_t mediaRepositoryId;

} ETPRecordStartedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECORD_STARTED, which identifies this message as an

ETPRecordStartedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call that has sound being recorded on it.

mediaRepositoryId

The cross reference ID of the Media Repository where the recording is stored.

Comments

This event is generated after any OAS service that initiates the recording of sound on a call.

ETPResourceTimeoutEvent

The ETPResourceTimeoutEvent report indicates that previously allocated resources for a

future outbound call have not been attached to a call within the timeout period.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPResourceTimeoutEvent_t resourceTimeout;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPResourceTimeoutEvent_t {

ETPResourceHandle_t resources;

} ETPResourceTimeoutEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RESOURCE_TIMEOUT, which identifies this message as an

ETPResourceTimeoutEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

resources

A handle to the timed-out resources.

Comments

After this event is generated, the resources are automatically deallocated.

ETPResourcesAllocatedEvent

The ETPResourcesAllocatedEvent report indicates that an application has successfully

allocated resources to an existing call via the etpAllocateResources() service.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPResourcesAllocatedEvent_t resourcesAllocated;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPResourcesAllocatedEvent_t { ConnectionID_t call;

ETPResourceList_t resourceList;

ETPResourceHandle_t resources;

ETPEventCause_t cause;

} ETPResourcesAllocatedEvent;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RESOURCES_ALLOCATED, which identifies this message as an

ETPResourcesAllocatedEvent.

call

The connection to which the resources were allocated.

resourceList

The list of resources allocated to the call (i.e., the list of required resources specified in

etpAllocateResources() to be allocated).

resources

A handle to the timed-out resources.

cause

The reason for this event.

Comments

The event is sent in the following scenarios:

An application has successfully allocated resources to an existing call via the

etpAllocateResources() service.

An application has successfully reallocated resources to an existing call. Note that the

ETPResourcesDeallocatedEvent event is not sent in this scenario.

ETPResourcesDeallocatedEvent

The ETPResourcesDeallocatedEvent report indicates that the resources an application has

successfully allocated to an existing call via the etpAllocateResources() service have been

deallocated.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPResourcesDeallocatedEvent_t

resourcesDeallocated;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPResourcesDeallocatedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

} ETPResourcesDeallocatedEvent;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RESOURCES_ALLOCATED, which identifies this message as an

ETPResourcesAllocatedEvent.

call

The connection from which the resources were deallocated.

cause

The reason for this event.

Comments

The event is sent in the following scenarios:

• An application has successfully deallocated resources from an existing call via the
etpDeallocateResources() service.

• An extension places a Basic Virtual Device (BVD) call on hold while having resources
allocated to it. The call is placed back in the CTI group and, hence, the resources are lost.

• Under some conditions when a call is unsuccessfully deflected away from a BVD while
having resources allocated to it.

• Under some conditions when resource reallocation across media servers or CTI servers fails
due to the deflection failing.

• A fault condition has occurred, resulting in the resources being spontaneously deallocated
from the call.

The event is not sent when a call is cleared down or diverted.

ETPSendDTMFEndedEvent

The ETPSendDTMFEndedEvent report indicates that the transmission of DTMFsignals on a

call has ended.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPSendDTMFEndedEvent_t sendDTMFEnded;

} u;

} ETPUnsolicitedEvent;

} event;

} ETPEvent_t;

typedef struct ETPSendDTMFEndedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

} ETPSendDTMFEndedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SEND_DTMF_ENDED, which identifies this message as an

ETPSendDTMFEndedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where the transmission of DTMF signals has ended.

cause

The reason for this event.

Comments

This event is generated after any OAS service that initiates the transmission of a series of

DTMF signals on a call and the transmission has ended.

ETPSendDTMFFailedEvent

The ETPSendDTMFFailedEvent report indicates that the transmission of DTMF signals on a

call has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef
struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPSendDTMFFailedEvent_t

sendDTMFFailed;

} u;

} ETPUnsolicitedEvent;

} event;

} ETPEvent_t;

typedef struct ETPSendDTMFFailedEvent_t { ConnectionID_t

 call;

ETPEventCause_t cause;

} ETPSendDTMFFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SEND_DTMF_FAILED, which identifies this message as an

ETPSendDTMFFailedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where the transmission of DTMF signals has failed.

cause

The reason for this event.

Comments

This event is generated after any OAS service that initiates the transmission of a series of

DTMF signals on a call and the transmission has failed.

ETPSendDTMFStartedEvent

The ETPSendDTMFStartedEvent report indicates that the transmission of a series of DTMF

signals on a call has begun.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPSendDTMFStartedEvent_t

sendDTMFStarted;

} u;

} ETPUnsolicitedEvent;

} event;

} ETPEvent_t;

typedef struct ETPSendDTMFStartedEvent_t {

ConnectionID_t call;

} ETPSendDTMFStartedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SEND_DTMF_STARTED, which identifies this message as an

ETPSendDTMFStartedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where the transmission of DTMF signals has started.

Comments

This event is generated after any OAS service that initiates the transmission of a series of

DTMF signals on a call.

ETPSpeechDetectionEndedEvent

The ETPSpeechDetectionEndedEvent report indicates that the speech engine stopped

collecting the utterance.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPSpeechDetectionEndedEvent_t

speechDetectionEnded;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPSpeechDetectionEndedEvent_t {

 ConnectionID_t call;

ETPEventCause_t cause;

long seconds;

unsigned short millisecs;

short timezone;

short dstflag;

} ETPSpeechDetectionEndedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SPEECH_ENDED, which identifies this message as an

ETPSpeechDetectionEndedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where Speech detection ended.

cause

ETP_MEC_SUCCESSFUL.

seconds

Time in seconds since midnight (00:00:00), January 1, 1970, coordinated universal time (UTC).

millisecs

Fraction of a second in milliseconds.

timezone

Difference in minutes, moving westward, between UTC and local time.

dstflag

Nonzero if daylight savings time is currently in effect for the local time zone.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the

user has completed his utterance.

ETPSpeechDetectionStartedEvent

The ETPSpeechDetectionStartedEvent report indicates that the speech engine has detected

that the user has started an utterance.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct {

ACSEventHeader_t eventHeader;

union {

struct {

CSTAMonitorCrossRefID_t monitorCrossRefID;

union {

ETPSpeechDetectionStartedEvent_t

speechDetectionStarted;

} u;

} etpUnsolicited;

} event;

} ETPEvent_t;

typedef struct ETPSpeechDetectionStartedEvent_t {

ConnectionID_t call;

ETPEventCause_t cause;

long seconds;

unsigned short millisecs;

short timezone;

short dstflag;

} ETPSpeechDetectionStartedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SPEECH_STARTED, which identifies this message as an

ETPSpeechDetectionStartedEvent.

monitorCrossRefID

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific

established association.

call

The connection identifier of the call where Speech Detection started.

cause

ETP_MEC_SUCCESSFUL.

seconds

Time in seconds since midnight (00:00:00), January 1, 1970, coordinated universal time (UTC).

millisecs

Fraction of a second in milliseconds.

timezone

Difference in minutes, moving westward, between UTC and local time.

dstflag

Nonzero if daylight savings time is currently in effect for the local time zone.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the

user has started his utterance

OAS DATA TYPES

For a listing of the data types used by the functions and events defined for the Open Application

Server API, view the header files:

• etp.h : Contains the OAS event types, event structures, and function prototypes.

• etpdefs.h: Contains the OAS data types.

• etpmediadefs.h: Contains the OAS data types for Media Services.

• csta.h : Contains the OAS csta event types, event structures, and function prototypes

• cstadefs.h: Contains all the OAS csta event data types

STRUCTURES

CallingDeviceID_t:

typedef ExtendedDeviceID_t CallingDeviceID_t;

CalledDeviceID_t:

typedef ExtendedDeviceID_t CalledDeviceID_t;

RedirectionDeviceID_t :

typedef ExtendedDeviceID_t RedirectionDeviceID_t;

SubjectDeviceID_t :

typedef ExtendedDeviceID_t SubjectDeviceID_t;

ConnectionID_t

CONNECTION IDENTIFIERS

A connection is the object that uniquely binds a call and a device. It is formed by combining a

call identifier with a device identifier. Connection identifiers are used extensively in CSTA to

make service requests. As defined in CSTA, a connection identifier may contain just a call

identifier or just a device identifier. However, for Application Link, both the device identifier and

the call identifier must be supplied for service requests.

The following is the structure for ConnectionID:

typedef struct ConnectionID_t { long

 callID; DeviceID_t

 deviceID;

ConnectionID_Device_t devIDType;

} ConnectionID_t;

Refer to Chapter 3 CSTA Services in Application Link Programmer’s Guide for information on

how to make a connection.

ExtendedDeviceID_t

typedef struct ExtendedDeviceID_t {

DeviceID_t deviceID;

DeviceIDType_t deviceIDType;

DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

DeviceType_t
typedef enum DeviceType_t {

DT_STATION = 0,

DT_LINE = 1,

DT_BUTTON = 2,

DT_ACD = 3, DT_TRUNK

= 4, DT_OPERATOR =

5,

DT_STATION_GROUP = 16,
DT_LINE_GROUP = 17,

DT_BUTTON_GROUP = 18,

DT_ACD_GROUP = 19,

DT_TRUNK_GROUP = 20,

DT_OPERATOR_GROUP = 21,

DT_TSAPIEx = 253, // New device for MTAP

DT_OTHER = 255

} DeviceType_t;

CallType_t
typedef enum CallType_t {

CT_AUDIO = 0,

CT_VIDEO = 1,

CT_AUDIO_VIDEO = 2

} CallType_t;

APPENDIX A TSAPI SERVICES SUPPORTED

The following tables list the TSAPI APIs and whether they are supported by the Open

Application Server. The tables are:

• TSAPI Control Services and Confirmation Events

• TSAPI Switching Function Services and Confirmation Events TSAPI Status Reporting
Services and Confirmation Events TSAPI Snapshot Reporting Services and Confirmation
Events

• TSAPI CSTA Computing Function Services and Confirmation Events

• TSAPI Escape and Maintenance Services and Confirmation Events

In addition, note the following concerning TSAPI services supported by OAS:

OAS supports static connection ID devices, not dynamic connection ID devices. Therefore,

ConnectionID_Device must always be set to STATIC_ID.

TSAPI Control Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED

acsAbortStream() X

acsCloseStream() X

ACSCloseStreamConfEvent X

acsOpenStream() X

ACSOpenStreamConfEvent X

acsQueryAuthInfo() X

ACSUniversalFailureConfEvent X

ACSUniversalFailureEvent X

cstaGetAPICaps() X

CSTAGetAPICapsConfEvent X

cstaGetDeviceList() X

CSTAGetDeviceListConfEvent X

TSAPI Switching Function Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED

cstaAlternateCall() X

CSTAAlternateCallConfEvent X

cstaAnswerCall() X

CSTAAnswerCallConfEvent X

cstaCallCompletion() X

CSTACallCompletionConfEvent X

cstaClearCall() X

CSTAClearCallConfEvent X

cstaClearConnection() X

CSTAClearConnectionConfEvent X

cstaConferenceCall() X

CSTAConferenceCallConfEvent X

cstaConsultationCall() X

CSTAConsultationCallConfEvent X

cstaDeflectCall() X

CSTADeflectCallConfEvent X

cstaGroupPickupCall() X

CSTAGroupPickupCallConfEvent X

cstaHoldCall() X

CSTAHoldCallConfEvent X

cstaMakeCall() X

CSTAMakeCallConfEvent X

cstaMakePredictiveCall() X

CSTAMakePredictiveCallConfEvent X

cstaPickupCall() X

CSTAPickupCallConfEvent X

cstaReconnectCall() X

CSTAReconnectCallConfEvent X

cstaRetrieveCall() X

CSTARetrieveCallConfEvent X

cstaTransferCall() X

CSTATransferCallConfEvent X

cstaSetAgentState() X

CSTASetAgentStateConfEvent X

cstaSetDoNotDisturb() X

CSTASetDoNotDisturbConfEvent X

cstaSetForwarding() X

CSTASetForwardingConfEvent X

cstaSetMsgWaitingInd() X

CSTASetMsgWaitingIndConfEvent X

cstaQueryAgentState() X

CSTAQueryAgentStateConfEvent X

cstaQueryDeviceInfo() X

CSTAQueryDeviceInfoConfEvent X

cstaQueryDoNotDisturb() X

CSTAQueryDoNotDisturbConfEvent X

cstaQueryForwarding() X

CSTAQueryForwardingConfEvent X

cstaQueryLastNumber() X

CSTAQueryLastNumberConfEvent X

cstaQueryMsgWaitingInd() X

CSTAQueryMsgWaitingIndConfEvent X

CSTAUniversalFailureConfEvent X

TSAPI Status Reporting Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED

cstaMonitorDevice() X

cstaMonitorCall() X

cstaMonitorCallsViaDevice() X

CSTAMonitorConfEvent X

cstaMonitorStop() X

CSTAMonitorStopConfEvent X

cstaChangeMonitorFilter() X

CSTAChangeMonitorFilterConfEvent X

CSTAMonitorEndedEvent X

CSTACallClearedEvent X

CSTAConferencedEvent X

CSTAConnectionClearedEvent X

CSTADeliveredEvent X

CSTADivertedEvent X

CSTAEstablishedEvent X

CSTAFailedEvent X

CSTAHeldEvent X

CSTANetworkReachedEvent X

CSTAOriginatedEvent X

CSTAQueuedEvent X

CSTARetrievedEvent X

CSTAServiceInitiatedEvent X

CSTATransferredEvent X

CSTACallInfoEvent X

CSTADoNotDisturbEvent X

CSTAForwardingEvent X

CSTAMessageWaitingEvent X

CSTALoggedOnEvent X

CSTALoggedOffEvent X

CSTANotReadyEvent X

CSTAReadyEvent X

CSTAWorkNotReadyEvent X

CSTAWorkReadyEvent X

TSAPI Snapshot Reporting Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED

cstaSnapshotCallReq() X

CSTASnapshotCallConfEvent X

cstaSnapshotDeviceReq() X

CSTASnapshotDeviceConfEvent X

TSAPI CSTA Computing Function Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED

cstaRouteRegisterReq() X

CSTARouteRegisterReqConfEvent X

cstaRouteRegisterCancel() X

CSTARouteRegisterCancelConfEvent X

CSTARouteRegisterAbortEvent X

CSTARouteRequestEvent X

CSTAReRouteEvent X

cstaRouteSelect() X

CSTARouteUsedEvent X

CSTARouteEndEvent X

cstaRouteEnd() X

TSAPI Escape and Maintenance Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED

cstaEscapeService() X*

CSTAEscapeServiceConfEvent X*

CSTAPrivateEvent X*

CSTAPrivateStatusEvent X*

CSTABackInServiceEvent X

CSTAOutOfServiceEvent X

cstaSysStatReq() X

CSTASysStatReqConfEvent X

cstaSysStatStart() X

CSTASysStatStartConfEvent X

cstaSysStatStop() X

CSTASysStatStopConfEvent X

cstaChangeSysStatFilter() X

CSTAChangeSysStatFilterConfEvent X

CSTASysStatEvent X

CSTASysStatEndedEvent X

*In OAS, no escape services are defined. However, additional services (e.g., Media Services) are implemented as API calls.

APPENDIX B UNIVERSAL FAILURE EVENTS

Confirmation events defined for each service are sent as a positive response from the server

for a previous service request. When the requested function service fails, an application can

receive a universal failure event instead of a confirmation event. There are two types of

universal failure events:

• CSTAUniversalFailureConfEvent

• ETPUniversalFailureConfEvent

CSTAUniversalFailureConfEvent

For information about the CSTAUniversalFailureConfEvent, refer to Chapter 5, “Switching

Function Services,” in Netware® Telephone Services™ Release 2 - Telephony Services

Application Program Interface (TSAPI).

ETPUniversalFailureConfEvent

The ETPUniversalFailureConfEvent provides a generic negative response from the server for

a previously requested OAS (ETP) service. It is sent in place of any confirmation event when

the requested function fails.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct

{

ACSHandle_t acsHandle;

EventClass_t eventClass; EventType_t

 eventType;

} ACSEventHeader_t;

typedef struct

{

ACSEventHeader_t eventHeader; Union {

Struct {

InvokeID_t invokeID;

union {

ETPUniversalFailureConfEvent_t

etpUniversalFailure;

} u;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPUniversalFailureConfEvent_t {

ETPUniversalFailure_t error;

} ETPUniversalFailureConfEvent_t;

typedef enum ETPUniversalFailure_t {

ETP_ERROR_START=2000, BAD_PARAMETER,

CCS_OUT_OF_SERVICE, //Not used

EMPTY_PLAY_LIST, INTERNAL_ERROR,

INVALID_FINAL_TIMEOUT,

INVALID_INITIAL_TIMEOUT,

INVALID_INTER_DIGIT_TIMEOUT,

INVALID_MAX_NUMBER_DIGITS,

INVALID_MAX_NUM_WORDS, //Not used

INVALID_MIN_NUM_WORDS, //Not used

INVALID_NO_DIGIT_TIMEOUT, INVALID_PLAY_LANGUAGE,

INVALID_PLAY_LIST, INVALID_TERMINATION_DIGIT,

INVALID_VOCABULARY_ID, //Not used

MEDIA_PORT_OUT_OF_SERVICE, //Not used

NO_RESOURCE_ALLOCATED, RESOURCE_NOT_AVAILABLE,

UNKNOWN_ETP_FAILURE,

UNKNOWN_MEDIA_PORT, WRONG_MEDIA_PORT_STATE,

INVALID_DIGIT_DETECTION_TYPE,

INVALID_MAX_DURATION,

INVALID_MEDIA_OBJECT_ENCODING_TYPE,

INVALID_MEDIA_OBJECT,

INVALID_MIN_DURATION,

INVALID_SILENCE_THRESHOLD,

MEDIA_OBJECT_DOES_NOT_EXIST,

REMOTE_PARTY_BUSY, //Not used

OPEN_FILE_FAILED,

OPEN_MEDIA_OBJECT_FAILED,

CLOSE_MEDIA_OBJECT_FAILED, //Not used

READ_MEDIA_OBJECT_FAILED,

WRITE_MEDIA_OBJECT_FAILED,

DELETE_MEDIA_OBJECT_FAILED, //Not used

READ_FILE_FAILED, //Not used

WRITE_FILE_FAILED, //Not used

CLOSE_FILE_FAILED, //Not used

INCORRECT_RESOURCES,

RESPONSE_TIMEOUT, INVALID_CALL_STATE,

LICENSE_NOT_AVAILABLE,

DEFLECT_ASSOCIATE_DATA_FAILED,

RESOURCE_SERVER_LOADED, EMPTY_DTMF_LIST,

INVALID_NUMBER_OF_RESULTS

} ETPUniversalFailure_t;

ERRORS

Error values indicate that an error has been returned while performing OAS functions. Specific

error values are:

BAD_PARAMETER

One or more of the supplied parameter values are invalid.

CCS_OUT_OF_SERVICE

Reserved for future use.

CLOSE_MEDIA_OBJECT_FAILED

Unable to close the media object that was previously opened.

DEFLECT_ASSOCIATE_DATA_FAILED

Reserved for future use.

EMPTY_DTMF_LIST

A service was requested to collect digits with an empty dtmflist.

EMPTY_PLAY_LIST

A service was requested to play media objects with an empty playList.

INCORRECT_RESOURCES

A resource allocation service has been requested, but the resources requested are invalid or

cannot be combined (e.g., player).

INTERNAL_ERROR

A service did not execute due to an internal error condition.

INVALID_CALL_STATE

An attempt was made to clear an unknown call.

INVALID_DIGIT_DETECTION_TYPE

A collect digits service was requested with an invalid digit detection type specified.

INVALID_FINAL_TIMEOUT

A service was requested to collect words with an invalid final timout parameter.

INVALID_INITIAL_TIMEOUT

A service was requested to collect words with an invalid initial timout parameter.

INVALID_INTER_DIGIT_TIMEOUT

A service was requested to collect digits with an invalid inter-digit timout parameter.

INVALID_MAX_DURATION

A record service was requested with a maximum duration out-of-range.

INVALID_MAX_NUMBER_DIGITS

A service was requested to collect digits with an invalid maximum number of digits parameter.

INVALID_MAX_NUM_WORDS

A service was requested to collect words with an invalid maximum number of words parameter.

INVALID_MEDIA_OBJECT

A service was requested to record with an invalid media object name.

INVALID_MEDIA_OBJECT_ENCODING_TYPE

A service was requested to record with an invalid media object type.

INVALID_MIN_DURATION

A record service was requested with a minimum duration out-of-range.

INVALID_MIN_NUM_WORDS

A service was requested to collect words with an invalid minimum number of words parameter.

INVALID_NO_DIGIT_TIMEOUT

A service was requested to collect digits with an invalid no digit timeout parameter.

INVALID_NUMBER_OF_RESULTS

A recognize service was requested with an invalid number of results specified.

INVALID_PLAY_LANGUAGE Reserved for future use. INVALID_PLAY_LIST

A service was requested to play media objects with an invalid playList.

INVALID_SILENCE_THRESHOLD

A record service was requested with an invalid silence threshold value.

INVALID_TERMINATION_DIGIT

A service was requested to collect digits with an invalid termination digit parameter.

INVALID_VOCABULARY_ID

A service was requested to collect words with an invalid vocabulary parameter.

LICENSE_NOT_AVAILABLE

Allocate Resource for ASR/TTS resource is requested but the license for that resource is not

available.

MEDIA_OBJECT_DOES_NOT_EXIST

A service was requested on a media object which doesn’t exist.

MEDIA_PORT_OUT_OF_SERVICE Reserved for future use. NO_RESOURCE_ALLOCATED

A media service was requested, but the necessary resources have not previously been

allocated.

OPEN_FILE_FAILED

A service was requested on a media object that cannot be read to copy data from that media

object.

OPEN_MEDIA_OBJECT_FAILED

A service was requested on a media object that cannot be opened.

READ_MEDIA_OBJECT_FAILED

A service was requested on a media object to which data cannot be copied.

REMOTE_PARTY_BUSY

A make call service was requested, but the remote party is not available.

RESOURCE_NOT_AVAILABLE

A resource allocation service has been requested, but the required resources are not available.

RESOURCE_SERVER_LOADED

No free channel is available in any suitable Media Server for this allocate resource request.

RESPONSE_TIMEOUT

The time within which a response is expected has expired.

WRITE_MEDIA_OBJECT_FAILED

A service was requested on a mediaobject to which data cannot be written.

UNKNOWN

A service did not execute due to an unknown error condition.

UNKNOWN_MEDIA_PORT

A service request was made on an unknown media port identifier.

WRONG_MEDIA_PORT_STATE

A service was requested when the media port is not in a state to process it.

APPENDIX C ETP CSTA PRIVATE DATA

Using ECMA CSTA’s private data mechanism, Mitel has extended the standard features of

CSTA to allow OAS applications to invoke OAS-specific features.

This appendix discusses:

• ECMA CSTA private data mechanism

• Manufacturer object

• identifier TSAPI private

• data structure ETP

• private data

ECMA CSTA PRIVATE DATA MECHANISM

As per the ECMA CSTA protocol ECMA-180, the private data mechanism includes

CSTAPrivateData, which is defined in ASN.1 (Abstract Syntax Notation 1) as follows:

CSTAProviderDATA ::= [APPLICATION 30] IMPLICIT SEQUENCE

{

manufacturer OBJECT IDENTIFIER, ANY

DEFINED BY manufacturer

}

For each private data, a unique manufacturer object identifier has been defined according to

ISO 6523 object identifier recommendation.

For information about the OBJECT IDENTIFIER, see “Manufacturer Object Identifier.” For

information about ANY DEFINED BY, see “TSAPI Private Data Structure.”

MANUFACTURER OBJECT IDENTIFIER

Each private data is identified by a unique object identifier. OBJECT IDENTIFIER data type is

defined by ASN.1 syntax notation as follows:

ISO(1) identified-organization(3) icd-ecma(12) member-company(2)

ericsson(1213) Open Application Server(40) private(xx) The value xx in private data identifies

the type of private data.

TSAPI PRIVATE DATA STRUCTURE

Each manufacturer object identifier defines a specific structure and the length of the structure.

Syntax

On the API level, PrivateData is defined by TSAPI as follows:

typedef struct PrivateData_t {

char vendor[32];

unsigned short length;

char data[1];

} PrivateData_t;

Parameters

vendor

32-byte parameter that stores the manufacturer object identifier. The vendor parameter

contains the following:

vendor[0] = 0x2B; /* iso(1) and identified-organization (3) in one node*/

vendor[1] = 0x0C; /* icd-ecma(12) */

vendor[2] = 0x02; /* member-company(2) */

vendor[3] = 0x89; /* ericsson (first of two parts) */

vendor[4] = 0x3D; /* ericsson (second of two parts) */

vendor[5] = 0x28; /* Open Application Server(40) */

vendor[6] = /* defined for each type of private data */

vendor[7] = 0x00; /* NULL terminator */

length

The length of the data portion (if there is any) of the private data structure that follows the

length parameter. If no data portion follows the length parameter, then the length must be

specified as 0 (zero).

data

The data parameter, if there is any.

Example

To store the manufacturer object identifier for the private data in the cstaMakeCall() service, the

vendor parameter contains the following:

vendor[0] = 0x2B; /* iso(1) and identified-organization (3) in one node*/

vendor[1] = 0x0C; /* icd-ecma(12) */

vendor[2] = 0x02; /* member-company(2) */

vendor[3] = 0x89; /* ericsson (first of two parts) */

vendor[4] = 0x3D; /* ericsson (second of two parts) */

vendor[5] = 0x28; /* Open Application Server(40) */

vendor[6] = 0x03; /* specifies that this is MakeCallVendorID private

data*/

vendor[7] = 0x00; /* NULL terminator */

Comments

Note the following:

• For each extended CSTA service, confirmation, or unsolicited event, the exact structure for
private data is specified.

• The structure must have the same exact parameters and lengths specified;

otherwise, the data is considered invalid.

ETP PRIVATE DATA

The following services can pass private data to the OAS client library. See Chapter 5,

“Switching Function Services,” for details.

cstaDeflectCall()

cstaMakeCall()

cstaMonitorDevice()

The following unsolicited events can pass private data to the OAS client library. See Chapter 6,

“Status Reporting Services,” for details.

CSTAConferencedEvent

CSTAConnectionClearedEvent

CSTADeliveredEvent

CSTADivertedEvent

CSTAEstablishedEvent

CSTAQueuedEvent

CSTATransferredEvent

