A MITEL
PRODUCT
GUIDE

MiContact Center Enterprise

Open Application Server (OAS) - API
Programmer’s Guide

Release 9.6
Document Version 1.0

September 2022

b0 Mitel

Powe

Notices

The information contained in this document is believed to be accurate in all

respects but is not warranted by Mitel Networks™ Corporation (MITEL®).

The information is subject to change without notice and should not be construed
in any way as a commitment by Mitel or any of its affiliates or subsidiaries. Mitel
and its affiliates and subsidiaries assume no responsibility for any errors or
omissions in this document. Revisions of this document or new editions of it
may be issued to incorporate such changes. No part of this document can be
reproduced or transmitted in any form or by any means - electronic or
mechanical - for any purpose without written permission from Mitel Networks
Corporation.

Trademarks

The trademarks, service marks, logos and graphics (collectively “Trademarks”)
appearing on Mitel's Internet sites or in its publications are registered and
unregistered trademarks of Mitel Networks Corporation (MNC) or its
subsidiaries (collectively "Mitel") or others. Use of the Trademarks is prohibited
without the express consent from Mitel. Please contact our legal department at_
legal@mitel.com for additional information. For a list of the worldwide Mitel
Networks Corporation registered trademarks, please refer to the website:
http://www.mitel.com/trademarks.

® ™ Trademark of Mitel Networks Corporation

© Copyright 2022, Mitel Networks Corporation All rights reserved

mailto:legal@mitel.com
mailto:legal@mitel.com
http://www.mitel.com/trademarks.

ABSTRACT

The Open Application Server (OAS) is an open, scalable platform on which Computer
Telephony Integration (CTI) media applications can be based. An easy to use call and media
control Application Programming Interface (API) enables applications to share network
resources while still reserving resources for mission critical media applications. The APl is
based on the Novell NetWare Telephony Services APl (TSAPI) and contains additional
functions that enhance the API with functionality not included in the standard TSAPI (for
example, media services). For general information about the API, please refer to NetWare®
Telephony Services Release 2 - Telephony Services Application Programming Interface
(TSAPI).

The Open Application Server APl Programmer’s Guide describes the ETP extensions to TSAPI
provided by the OAS. In addition to the TSAPI programming interface, which incorporates the
following standards:

e ECMA (European Computer Manufacturers Association. ECMA is an international,
European-based industry association that focuses on the standardization of information and
communications systems.)

e CSTA (Computer-Supported Telecommunications Applications)
and the following services: Telephony Call Control Services

e Call/Device Monitoring Services

e Query Services

o the OAS API incorporates the following services: Media Control Services
e Virtual Device Services

¢ Inter-application Communication Device Services

HOW THIS GUIDE IS ORGANIZED

This guide is structured following the same principles as the TSAPI specification. For the
reader who is familiar with that specification, this simplifies finding information. The chapters
and appendices are:

¢ ‘“Introduction” - Discusses the Open Application Server—its TSAPI foundation and the OAS
API product architecture.

¢ “Functional Call Model” - References the functional call model and terminology specific to
the OAS API.

e “Control Services” - References the control services that the OAS supports.

e “Switching Function Services” - Discusses the OAS’s Switching Function Services available
to control calls.

e “Status Reporting Services” - Specifies the status reporting functions and confirmation
events that differ from those specified by TSAPI. Describes OAS-specific unsolicited event
messages coming from the OAS system.

“OAS Data Types” - References the data types used by the functions and messages
defined for the OAS API.

° “References”

e Appendix A, “TSAPI Services Supported” - Lists the TSAPI services and whether the OAS
supports them.

e Appendix B, “Universal Failure Events” — Describes the CSTA and ETP Universal Failure
Events.

e Appendix C, “ETP CSTA Private Data” - Discusses the private data mechanism, which
extends the standard features of CSTA to allow OAS applications to invoke OAS-specific
features.

CONVENTIONS

SERVICE FUNCTIONS VERSUS EVENTS

All OAS service functions start with etp and all OAS confirmation and unsolicited events start
with ETP. For example:

etpAllocateResources() (service function)

ETPAllocateResourcesConfEvent (confirmation event)

USE OF EMPHASIS

The conventions used in this reference to distinguish service function names, parameter
names, parameter values, message events, etc. are as follows:

This font is used for service function names and parameter values. For example, service function
names include etpPlay() and etpCollectDigits(). Sample parameter values are ETPCONFIRMATION
and ETP_MAX_DIGITS.

This font is used for parameter names. For example: acsHandle and invokelD.
This font is used for message events. For example: ETPPlayConfEvent.

This font is used for error messages. For example: ACSERR_BADHDL.

This font iS used for programming statements and declarations. For example:

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpPlay (

ACSHandle_t acsHandle,
InvokeID t invokelD,
ConnectionID t *call,
int messagelD,
ETPPlayList_t *playList) ;

COMPANION REFERENCES

The Open Application Server APl Programmer’s Guide points to other references for additional
information. When using this guide, you will also need the following:

e ApplicationLink, Application Programmer’s Guide. EN/LZT 1022273

e Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI). Novell, May 1995.

INTRODUCTION

THE TELEPHONY SERVICES API (TSAPI) FOUNDATION

The Telephony Services API (TSAPI) is a set of APIs that allows applications to monitor and
control devices in a switching domain to bring together the two most common pieces of
equipment on an end user's desktop—the telephone and computer. It supports telephony
control capabilities in a generic, switch independent way (e.g., supports PBXs from various
vendors).

TSAPI is based on international standards for Computer Telephony Integration (CTI) telephony
services. Specifically, the ECMA CTI standard definition of Computer- Supported
Telecommunications Applications (CSTA Phase 1) is the foundation for TSAPI. ECMA is an
international, European-based industry association that focuses on the standardization of
information and communications systems. The CSTA standard is a technical agreement
reached by an open, multi-vendor consortium of major switch and computer vendors. Since
CSTA services and protocol definitions are the basis for TSAPI, TSAPI provides a generic,
switch-independent API. The TSAPI programming interface definition incorporates ECMA
CSTA telephony call control services, call/device monitoring services, and query services.

Open Application Server (OAS) builds on the TSAPI foundation, extending its capabilities with
media services, virtual device functions, and other functionality. It allows applications to utilize
resources in a MX-ONE network in a cost efficient yet flexible way.

PURPOSE

This reference specifies the OAS APIs (i.e., the additions to TSAPI that provide the extended
functionality of the Open Application Server). The API is specified in terms of its services and C
programming language syntax. OAS API supports Microsoft Windows 7 and 10, Microsoft
Windows Server 2K12, 2K16 and 2K19.

For information regarding generic TSAPI services and syntax, please refer to Netware®
Telephone Services™ Release 2 - Telephony Services Application Program Interface (TSAPI).

FUNCTIONAL CALL MODEL

The Open Application Server API functional call model is the same as that for TSAPI. For
details, refer to Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI).

CONTROL SERVICES

The Open Application Server supports the control services specified in Section 4, “Control
Services,” of the Netware® Telephony Services Release 2 - Telephony Services Application

Programming Interface (TSAPI).

SWITCHING FUNCTION SERVICES

Applications use the Switching Function Services available through the Open Application
Server API to control calls. For OAS, the Dialed Number Identification Service (DNIS) name will
be displayed for an ACD call when the dialed number value maps to a defined name; if there is
no defined name, the DNIS number will be provided.

This chapter discusses the following types of Switching Function Services:

¢ Physical and Logical Device Call Control Services
e Virtual Device Call Control Services
¢ Inter-application Communication Device Control Services

¢ Media Control Services

PHYSICAL AND LOGICAL DEVICE CALL CONTROL SERVICES

A physical device is one associated with a real telephone extension, whereas a logical device
is a software-defined device (within the switch) and is associated with an extension. Logical
devices include ACD Groups and CTI Groups.

The call control services supported by OAS for physical and logical devices can be divided into
three categories:

e Standard TSAPI services. These are a subset of TSAPI Release 2 supported by the
ApplicationLink product. See the ApplicationLink Application Programmer’s Guide for
details.

o Standard TSAPI services extended in OAS to provide enhanced functions. The extensions
are implemented by employing the private data mechanism provided in TSAPI. The
extensions are detailed in this section.

o OAS-specific services to provide enhanced functions. These services are detailed in this
section.

cstaDeflectCall()

The cstaDeflectCall() service redirects an Alerting or Connected call to a given number. When the
call is alerting at either an ACD or CTI group, the cstaDeflectCall() service is extended using the
private data mechanism to accept a retain position flag. On the cstaDeflectCall() service API call, the
ETP_PD_RetainPositionFlag private data can be passed to the OAS client library. Presence of the
private data on the cstaDeflectCall() signals OAS to deflect the call with the call’s position in the
gueue retained. Absence of this parameter means that the switch does not retain the position of the
call in the queue.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this message. For
a complete description of the event structure, refer to Appendix C, “ETP CSTA Private Data,”
Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI), the ACS Data Types and CSTA Data Types
sections.

typedef struct ETP PD RetainPositionFlag t {
char vendor [32];
unsigned short length;

} ETP_PD RetainPositionFlag t;

Parameters

vendor

Stores the manufacturer object identifier. For the ETP_PD_RetainPositionFlag, the sequence
is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x04, 0x0}
length

Length of the data portion of the private data structure that follows the length parameter. Since
there is no data portion, length must contain 0 (zero).

Comments

If the function returns an error with a cost code service busy, another service is trying to deflect
to the same destination. Retry; the request should be successful.

Note the following concerning the structure and parameters:

e |tis assumed that the byte alignment for the structure is 1. In other words, there is no gap
between the vendor parameter and the length parameter.

e There is no data parameter.

e The retain position flag is valid only for calls on a CTl or ACD group, and when the
‘deflected to’ device is an analog, CTI or ACD device.

cstaMonitorDevice ()

The cstaMonitorDevice() service monitors the requested Device. On the cstaMonitorDevice()
service API call, the ETPTenantID _t is added to private data and can be passed to the OAS
client library.Presence of the private data on the cstaMonitorDevice () signals OAS to search
the device in the specified Tenant list.For more information, refer to Appendix C, "ETP CSTA
Private Data,"ApplicationLink Application Programmer's Guide, and Netware® Telephone
Services™ Release 2 - Telephony Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for his message.
For a complete description of the event structure, refer to Appendix C, “ETP CSTA Private Data,”
Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release 2 - Telephony

Services Application Program Interface (TSAPI), the ACS Data Types and CSTA Data Types
sections.
typedef struct ETPTenantID t ({

TenantID_t TenantID;
} ETPTenantID_t;

Parameters for Private data
vendor

Stores the manufacturer object identifier. For the ETPTenantID, the sequence is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x05, 0x0}
length

Length of the data portion of the private data structure that follows the length parameter. Since
there is no data portion, length must contain O (zero).

Comments

If the function returns an error with a cause code as security violation, wrong tenant id is sent in
request.

Note the following concerning the structure and parameters:- It is assumed that the byte
alignment for the structure is 1. In other words, there is no gap between the vendor parameter
and the length parameter.

Sample code to fill in Tenant ID in private data:

int datalen = sizeof (PrivateData t)+sizeof (ETPTenantID t);
ETPTenantID t etpTID;

PrivateData t *privData = (PrivateData t*)malloc(dataLen);
memset ((void*) &etpTID,0,sizeof (ETPTenantID t));

strncpy (etpTID.TenantID, (LPCSTR) generalPage.m tenantID,63);
memset ((void*)privData, 0, datalen);

memcpy ((void*)privData->vendor, TenantVendorID, 8); privData-
>length = sizeof (ETPTenantID t)+1; memcpy((void*)privData-
>data, &etpTID, sizeof(ETPTéhantIDit));

ret = MonitorDevice (handle, invokeID, &device, &filter, privData);

etpAssociateData()

The etpAssociateData() service associates/attaches data to a call so that subsequent unsolicited
events relating to the call contain the data.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpAssociateData (

ACSHandle_t acsHandle,
InvokeID t invokelD,
ConnectionID t *call,

ETPAssociatedData t *associatedData) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call to which resources are to be allocated.

The structure for the ConnectionID_t is

typedef struct ConnectionID t {
long calllD,
DevicelID t devicelD,

ConnectionID Device t devIDType,
} ConnectionID t;

Parameters

calllD

Unique id used for the call.

devicelD

device identifier of the device.

devIDType

The four byte enum which specifies the type of device either STATIC or DYNAMIC.

associatedData

A pointer to the data to be associated with the call.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will

be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPAssociatedDataConfEvent message to ensure
that the service request has been acknowledged and processed by the server.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is valid for virtual devices as well as physical and logical devices. The unsolicited
events that support associated data are:

e CSTAConferencedEvent

e CSTAConnectionClearedEvent
e CSTADeliveredEvent

e CSTADivertedEvent

e CSTAEstablishedEvent

e CSTAQueuedEvent

e CSTATransferredEvent

ETPAssociateDataConfEvent

ETPAssociateDataConfEvent provides a positive response from the server for a previous
etpAssociateData() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct
{

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType_ t eventType;

} ACSEventHeader t;

typedef struct
{
ACSEventHeader t eventHeader;
Union
{
Struct
{
InvokeID t invokeID;
union
{
ETPAssociateDataConfEvent t assocData;
}ou; B
} etpConfirmation;
} event;

} ETPEvent t;

typedef struct ETPAssociateDataConfEvent t {
Nulltype null;

} ETPAssociateDataConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ASSOCIATE_DATA_CONF, which identifies this message as an
ETPAssociateDataConfEvent.

invokelD

Specifies the function service request instance for the service, which was processed at the
server or switch. This identifier is provided to the application when a service request is made.

etpCancelCallback()

The etpCancelCallback() service allows an application to cancel a previously set callback on a
device. A specific callback can be canceled by including the called party device ID. If the called
party device ID is not included, then all callbacks on the device are removed.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpCancelCallback (

ACSHandle_ t acsHandle,
InvokelID t invokelID,
DeviceID t *devicelD,

DeviceID_t *callbackToCancel) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

A pointer to the device identifier of the device which originates the etpCancelCallback() service.

callbackToCancel

A pointer to the device identifier of the called party device. If the device identifier is not included
(i.e., the value of CallBackToCancel is null), all callbacks on the device are removed.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPCancelCallbackConfEvent message to ensure
that the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPCancelCallbackConfEvent

ETPCancelCallbackConfEvent provides a positive response from the server for a previous
etpCancelCallback() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct
{
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPCancelCallbackConfEvent t cancelCB;
}our
} etpConfirmation;
} event;
} ETPEvent t;
typedef struct ETPCancelCallbackConfEvent t {
Nulltype null;

} ETPCancelCallbackConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_CANCEL_CALLBACK_CONF, which identifies this message as an
ETPCancelCallbackConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpDeflectCallWithData()

This function allows an application to deflect a call with user associated data. The user
associated data will be provided to the device to which the call is diverted in
CSTADeliveredEvent.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpDeflectCallWithData (ACSHandle_ t acsHandle,
InvokeID_t invokelID,
ConnectionID t *deflectCall,
DevicelID t *calledDevice
ETPAssociatedData t *associatedData,
PrivateData_t *privateData);
Parameters
acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

Deflectcall

A pointer to the connection identifier of the call to be deflected.

calledDevice

A pointer to the device identifier of device to which the call is to be deflected.

associatedData

A pointer to the data to be associated with the call.

privateData

Indicates the privateData.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPDeflectCallWithDataConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for calls on a virtual device.

Application can use this functionality to keep track of a call when it is deflected to another MX-
ONE node. To see this associated data, the deflected destination must be monitored by
another OAS or ApplicationLink.

ETPDeflectCallWithDataConfEvent

ETPDeflectCallwWithDataConfEvent provides a positive response from the server for a
previous etpDeflectCallWithData() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct{

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader_ t eventHeader;
union {

struct {
InvokeID t invokelID;
union {
ETPDeflectCallWithDataConfEvent t assocData;

}ou;

} etpConfirmation;

} event;

} ETPEvent t;

typedef struct ETPDeflectCallWithDataConfEvent t ({
Nulltype null;

} ETPDeflectCallWithDataConfEvent t;
Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_DEFLECT_CALL_WITH_DATA_CONF, which identifies this message as an
ETPDeflectCallwWithDataConfEvent.

invokelD

Specifies the function service request instance for the service, which was processed at the
server or switch. This identifier is provided to the application when a service request is made.

etpEnterAccountCode()

The etpEnterAccountCode() service associates an account code with either an active call in
speech or a new call that it starts. If the call is currently active (the device is in the Connected
state), the account code uses another line that appears on the telephone set. If the device is in
the Idle state, a line appearance will be selected, the account code dialed, and the line remains
in the Dial Tone state ready for manual dial or dial through a cstaMakeCall() service request.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpEnterAccountCode (ACSHandle t
acsHandle,
InvokelID t invokelID,

ConnectionID t *call,
AccountCode_t accountCode) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call to which the account code is associated. Used
when the device is in the Connected state.

accountCode

A null terminated character string that contains the account code to be entered. The code is
market and system specific, and the maximum number of characters is 10.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPEnterAccountCodeConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle or Connected state.

ETPEnterAccountCodeConfEvent

ETPEnterAccountCodeConfEvent provides a positive response from the server for a
previous etpEnterAccountCode() request.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef

struct {
ACSHandle t acsHandle;
EventClass_t eventClass;
EventType_t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPEnterAccountCodeConfEvent t

enterAccountCode;
boug
} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPEnterAccountCodeConfEvent t {
Nulltype null;
} ETPEnterAccountCodeConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ENTER_ACCOUNT_CODE_CONF, which identifies this message as an
ETPEnterAccountCodeConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpEnterAuthorizationCode()

The etpEnterAuthorizationCode() service allows an application to dial an authorization code on
an idle device.

Syntax
#include <acs.h>

#include <csta.h>
#include <etp.h>

RetCode t etpEnterAuthorizationCode (

ACSHandle_t acsHandle,
InvokeID t invokelID,

DeviceID t *devicelD,
AccountCode t authCode) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

A pointer to the device identifier of the device with which an authorization code will be
associated.

authCode

A null terminated character string that contains the authorization code to be entered. The code
is market and system specific, and the maximum number of characters is 10.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPEnterAuthorizationCodeConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPEnterAuthorizationCodeConfEvent

ETPEnterAuthorizationCodeConfEvent provides a positive response from the server for a
previous etpEnterAuthorizationCode() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokelID;
union {
ETPEnterAuthorizationCodeConfEvent t enterAuthCode;
}ous
} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPEnterAuthorizationCodeConfEvent t {
Nulltype null;

} ETPEnterAuthorizationCodeConfEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ENTER_AUTHORIZATION_CODE_CONF, which identifies this message as an
ETPEnterAuthorizationCodeConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpMessageDiversion()

The etpMessageDiversion() service allows an application to set or cancel diversion of a message
to a predefined destination for specified reasons when the device is in the Idle state.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpMessageDiversion (ACSHandle t
acsHandle, InvokeID t
invokeID, DeviceID t
*devicelID, Boolean
divertMessage, Int
diversionType, TimeOrDate t
timeOrDate) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

A pointer to the device identifier of the device to which diversion to a predefined destination is
to be set or canceled.

divertMessage

If set to true, diversion to a predefined destination is set. If set to false, message diversion is
canceled.

diversionType

Specifies the reason for the diversion. Values are between 0 and 9, and are system and market
specific.

timeOrDate

A null terminated 4-byte string that can contain date or time depending upon the reason
specified in diversionType. For example, if the reason were “Out for Jury Duty,” then the string
would contain the date; if the reason were “Out for Lunch,” then it would contain the time. The
string is system and market specific.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPMessageDiversionConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPMessageDiversionConfEvent

ETPMessageDiversionConfEvent provides a positive response from the server for a previous
etpMessageDiversion() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPMessageDiversionConfEvent t msgDiversion;
}ous B
} etpConfirmation;
} event;

} ETPEvent t;

typedef struct ETPMessageDiversionConfEvent t {
Nulltype null;
} ETPMessageDiversionConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_MESSAGE_DIVERSION_CONF, which identifies this message as an
TPMessageDiversionConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpPressProgrammableKey()

The etpPressProgrammableKey() service allows an application to press any programmable key
on the device by identifying the key number as defined by the MX-ONE telephone set key
numbering system.

Syntax
#include <acs.h>

#include <csta.h>
#include <etp.h>

RetCode t etpPressProgrammableKey (

ACSHandle_t acsHandle,
InvokeID t invokelID,
DeviceID t *devicelD,
KeyNumber t keyNumber) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

A pointer to the device identifier of the device on which the application will press the
programmable key.

keyNumber

The key to be pressed as defined by the MX-ONE telephone set key numbering system. Any
key can be pressed except digits, the transfer key, the conference key, and the clear key. Use
caution when invoking this service—the key numbering on different types of digital telephone
sets on the MX-ONE is not the same.

Return Values

This function returns the following values depending on whether the application is using library-
or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPPressProgrammableKeyConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical device in the Idle state.

ETPPressProgrammableKeyConfEvent

ETPPressProgrammableKeyConfEvent provides a positive response from the server for a
previous etpPressProgrammableKey() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct |
InvokeID_t invokeID;
union {
ETPPressProgrammableKeyConfEvent t pressProgKey;
}ous
} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPPressProgrammableKeyConfEvent _t {

Nulltype null;
} ETPPressProgrammableKeyConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_PRESS_PROGRAMMABLE_KEY_CONF, which identifies this message as an
ETPPressProgrammableKeyConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpSendDTMF()

The etpSendDTMF() service transmits a series of DTMF signals on an established call in the
Connected state.

Note: The etpSendDTMF() service is a Media Control Service as well as a
Physical and Logical Device Call Control Service

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpSendDTMF (

ACSHandle_t acsHandle,
InvokeID t invokelID,
ConnectionID t *call,
DTMFListit dtmflList) ;
Parameters
acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function

service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call to which the DTMF signals are to be sent.

dtmfList

A null terminated string containing the list of DTMF digits to be sent. Valid values are 0, 1, 2, 3,
4,5,6,7,8,9,* #. The string can contain from 1 to 20 characters.

Return Values

This function returns the following values depending on whether the application is using library-
or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSendDTMFConfEvent message to ensure that
the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a physical or virtual device.

ETPSendDTMFConfEvent

ETPSendDTMFConfEvent provides a positive response from the server for a previous
etpSendDTMF() request.

Note: The etpSendDTMF() service is a Media Control Service as well as a
Physical and Logical Device Call Control Service.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType_t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader_ t eventHeader;
union {
struct {
InvokeID t invokelID;
union {
ETPSendDTMFConfEvent t sendDTMF;
}ou;
} etpConfirmation;
} event;

} ETPEvent t;

typedef struct ETPSendDTMFConfEvent t {
Nulltype null;

} ETPSendDTMFConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SEND_DTMF_CONF, which identifies this message as an
ETPSendDTMFConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpSetACDGroupForward()

The etpSetACDGroupForward() service allows an application that is monitoring an Automatic Call
Distribution (ACD) supervisor to request to forward an ACD group to another destination.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpSetACDGroupForward (ACSHandle t

acsHandle,
InvokeID_t invokelID,
DeviceID_ t *devicelD,
Boolean forwardACDGroup,
DeviceID t *acdDevicelID,
DeviceID_ t *fwdToDevicelD) ;
Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

A pointer to the device identifier of the device containing the ACD supervisor.

forwardACDGroup

If set to true, then the ACD group is forwarded to another destination. If set to false, then ACD
group forwarding is canceled.

acdDevicelD

A pointer to the device identifier of the device that contains the ACD group to be forwarded.

fwdToDevicelD

A pointer to the device identifier of the device to which the ACD group is to be forwarded.

Return Values

This function returns the following values depending on whether the application is using library-
or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a

positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSetACDGroupForwardConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

This service is only valid for a logical device in the Idle state.

ETPSetACDGroupForwardConfEvent

ETPSetACDGroupForwardConfEvent provides a positive response from the server for a
previous etpSetACDGroupForward() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass t eventClass;
EventType t eventType;

} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {

ETPSetACDGroupForwardConfEvent t setACDGrpFwd;
}ous
} etpConfirmation;
} event;
} ETPEvent t;
typedef struct ETPSetACDGroupForwardConfEvent t {
Nulltype null; B

} ETPSetACDGroupForwardConfEvent _t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SET_ACD_GROUP_FORWARD_CONF, which identifies this message as an
ETPSetACDGroupForwardConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

VIRTUAL DEVICE CALL CONTROL SERVICES

This section defines the Call Control Services supported for all virtual device types. These
functions allow client applications to:

e Establish, control, and destroy calls at a virtual device

e Answer incoming calls at a virtual device

The following functions have additional functionality compared to how they work for the physical
device type as defined in the ApplicationLink Application Programmer’s Guide. They are
described in more detail below.

cstaAnswerCall()
cstaClearConnection()
cstaDeflectCall()/etpDeflectCallWithData()

cstaMakeCall()

The following functions are only supported for virtual devices, and are described in more detail
below:

etpClearCallinQueue()

etpJoinCalls()

etpSplitCalls()

Each function in this section has an associated confirmation event message as per standard
TSAPI services. See “Control Services” and “Status Reporting Services” respectively, in this
reference and in Netware® Telephony Services™ Release 2 - Telephony Services Application
Programming Interface (TSAPI) for more information on events.

cstaAnswerCall()

Virtual devices do not have the physical capabilities necessary to answer calls alerting at them.
Therefore, the cstaAnswercCall() service may only be invoked on calls alerting at virtual devices
after the devices have media resources allocated to them. Refer to etpAllocateResources() for
details.

cstaClearConnection()

The cstaClearConnection() releases the specified virtual device from the designated call. The
connection is left in the Null state. Additionally, the CSTA connection identifier provided in the
service request is released. A successful cstaClearConnection() service also deallocates the
resources allocated to that call.

cstaDeflectCall()/etpDeflectCallWithData

The cstaDeflectCall() and etpDeflectCallWithData() services release the specified virtual device
from the designated call. A successful cstaDeflectCall() Or etpDeflectCallWithData() service also
deallocates the resources allocated to that call.

cstaMakeCall()

The cstaMakecCall() service originates a call from a device (the originator or calling device that
must be on the switch) to another device (the destination or called device). When the calling
device is a virtual device, the cstaMakeCall() service is extended using the private data
mechanism to accept a resource handle. When establishing an outbound call from a virtual
device, private data is set to the resource handle returned in the
ETPAllocateResourcesConfEvent message after resources are allocated. The resources
must not be attached to an existing call.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP_PD ResourceHandle t { char
vendor [32]
unsigned short length;
ETPResourceHandle t resourceHandle;

} ETP_PD ResourceHandle t;

typedef struct ETPResourceHandle t {

ServerID t resourceServer;
DevicelID t resourceDevice;
DevicelID t ownerDevice;
ResourceCharacteristic t resourceld;

} ETPResourceHandle t;

Parameters

vendor

Stores the manufacturer object identifier. For ETP_PD_ResourceHandle, the sequence is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x03, 0x0}
length

Length of the resource handle.

resourceHandle

A handle to some previously allocated resources.

resourceld

Id of the resource handle.
Comments

Virtual devices do not have the physical capabilities necessary to establish outbound calls from
them. To establish an outbound call from a virtual device, an application must first allocate
resources for it via the etpAllocateResources() service.

Note the following concerning the structure and parameters:

e The resource handle must immediately follow the length parameter.

e Itis assumed that the byte alignment for the structure is 1. In other words, there is no gap
between vendor parameter and length parameter as well as length parameter and
resourceHandle parameter.

etpClearCallinQueue ()

This etpClearCallinQueue () request allows a user to clear a call in a Queue when no media
resources are attached to the call.

Virtual devices do not have the physical capabilities necessary to answer calls alerting at them
until the necessary resource are allocated. At this time the call which is there in the queue can
be cleared using etpClearCallinQueue() request.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode t etpClearCallInQueue (

ACSHandle t hRegq,

InvokeID_ t invokelID,

ConnectionID t* pQueuedCall) ;
Parameters

hReq

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

pQueuedCall

A pointer to the connection identifier of one of the queued calls.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPClearCallinQueueConfEvent message to ensure
that the service request has been acknowledged and processed by the OAS system.
The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

ETPClearCalllnQueueConfEvent

ETPClearCallinQueueConfEvent provides a positive response from the server for a previous
etpClearCallinQueue() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct
{

ACSHandle_t acsHandle;
EventClass t eventClass;
EventType_ t eventType;

} ACSEventHeader t;

typedef struct
{

ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPClearCallInQueueConfEvent t clearCallInQueue;
}ou;
} etpConfirmation;
} event;

} ETPEvent t;

typedef struct ETPClearCallInQueueConfEvent t{
Nulltype null;

} ETPClearCallInQueueConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_CIEAR_CALL_IN_QUEUE_CONF, which identifies this message as an
ETPClearCallinQueueConfEvent.

invokelD

Specifies the function services request instance for the service that was processed at the
server or switch. This identifier is provided to the application when a service request is made.

etpJoinCalls()

The etpJoinCalls() service connects an inbound call in the Connected state with an outbound
call in the Connected or Alerting state at the same virtual device. In other words, the
etpJoinCalls() service connects the speech path between the two calls.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode _t etpJoinCalls (ACSHandle_ t

acsHandle,

InvokeID t invokeID, ConnectionID t
*firstConnection, ConnectionID t
*secondConnection) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

firstConnection

A pointer to the connection identifier of one of the calls to be joined.

secondConnection

A pointer to the connection identifier of the call to be joined with the first call.
Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For

application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPJoinCallsConfEvent message to ensure that the
service request has been acknowledged and processed by the OAS system.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

Any combination of inbound and outbound calls may be joined together with the following
restrictions:

e Inbound calls must be in the Connected state.
¢ Outbound calls on a DSP Media Server must either be in the Connected or Alerting state.

e Qutbound calls on an IP Media Server must be in the Connected state.

In addition, two calls at the same virtual device may be joined only if their call termination
points coexist within the same physical media server (refer to etpAllocateResources()).

Media activity cannot be initiated on a joined call.

A successful call to this function establishes a speech path between two calls at the same
virtual device.

ETPJoinCallsConfEveffore

After

ETPJoinCallsConfEvent provides a positive response from the server for a previous
etpJoinCalls() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass;
EventType_ t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union

{
struct
{
InvokeID t invokelID;
union

{
ETPJoinCallsConfEvent t joinCalls;

}ou;
} etpConfirmation;
} event;
} ETPEvent t;
typedef struct ETPJoinCallsConfEvent t {
Nulltype null;
} ETPJoinCallsConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_JOIN_CALLS_CONF, which identifies this message as an
ETPJoinCallsConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpSplitCalls()

etpSplitCalls() service disconnects the speech path between two calls previously joined at the

same virtual device using the etpJoinCalls() service.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpSplitCalls (ACSHandle_ t

acsHandle,

InvokeID t invokeID, ConnectionID t
*firstConnection, ConnectionID t
*secondConnection) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

firstConnection

A pointer to the connection identifier of one of the joined calls.

secondConnection

A pointer to the connection identifier of the call joined with the first call.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSplitCallsConfEvent message to ensure that the
service request has been acknowledged and processed by the OAS system.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

A successful call to this function disconnects the speech path between two calls that were
previously joined at the same virtual device using etpJoinCalls().

Before

ETPSplitCallsConfEvent

ETPSplitCallsConfEvent provides a positive response from the server for a previous

etpSplitCalls() request.

Syntax

After

Before

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct
{
InvokelID t invokeID;

union

{

ETPSplitCallsConfEvent t splitCalls;

}oui

} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPSplitCallsConfEvent t ({
Nulltype null;
} ETPSplitCallsConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SPLIT_CALLS_CONF, which identifies this message as an
ETPSplitCallsConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

INTER-APPLICATION COMMUNICATION DEVICE CONTROL
SERVICES

The Inter-application Communication Device Control Services allow applications to
communicate with each other. The applications use devices called Inter-application
Communication Devices (ICDs) to send and receive messages asynchronously. Applications
send messages to an ICD. To receive messages, an application must monitor an ICD and
receive the ETPReceivedMessageEvent unsolicited event.

The device identifier of an ICD must begin with the tilde (~) character. An ICD is created by an
application starting a monitor using cstaMonitorDevice(). If the ICD does not exist, it is created at
this time. When the application sends a message and the device exists, the ICD accepts the
message. If the device does not exist, a negative confirmation event is returned. Multiple
applications can receive messages from any ICD.

cstaMonitorDevice()

The cstaMonitorDevice() service initiates unsolicited event reporting from a device. An
application can receive messages from an ICD by monitoring it via this service. In the
cstaMonitorDevice() service API call, the ETP_PD_MonitorlcdFlag private data can be passed
to the OAS client library. Presence of private data in the cstaMonitorDevice() signals OAS to start
a monitor on an ICD and, if the device does not exist, the OAS dynamically creates the device.

Absence of this parameter means that if the device does not exist, the device will not be
created and the parameter will be considered an invalid device identifier.

For more information, refer to Appendix C, “ETP CSTA Private Data,” Application Application
Link Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP_PD MonitorIcdFlag t ({
char vendor [32];
unsigned short length;

} ETP _PD MonitorIcdFlag t;

Parameters

vendor

Stores the manufacturer object identifier. For the ETP_PD_MonitoricdFlag, the sequence is:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x01, 0x0}
length

Length of the data portion of the private data structure that follows the length parameter. Since
there is no data portion, length must contain 0 (zero).

Comments
Note the following concerning the structure and parameters:

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap
between the vendor parameter and the length parameter.

There is no data parameter.

etpSendMessage()

The etpSendMessage() service sends a message to an Inter-application Communication Device
(ICD).

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpSendMessage (

ACSHandle t acsHandle,
InvokeID_ t invokelID,

DevicelID t *devicelD,
Message_t *message) ;

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

A pointer to the device identifier of the ICD to which the message is sent. The ICD device
identifier must begin with the tilde (~) character.

message

A pointer to the message being sent on the ICD. This consists of the length of the message
(maximum of 512 bytes) and the message data.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated ldentifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSendMessageConfEvent message to ensure
that the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

ETPSendMessageConfEvent

ETPSendMessageConfEvent provides a positive response from the server for a previous
etpSendMessage() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle; EventClass_t
eventClass; EventType t
eventType;
} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPSendMessageConfEvent t sendMessage;
}ou;
} etpConfirmation;
} event;

} ETPEvent t;
typedef struct ETPSendMessageConfEvent t ({
Nulltype null;

} ETPSendMessageConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SEND_MESSAGE_CONF, which identifies this message as an
ETPSendMessageConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

Comments

The confirmation event indicates that the ICD to which the message was sent exists; (i.e., that it
is being monitored). It does not, however, indicate the message has been received by any
monitoring application or not.

MEDIA CONTROL SERVICES

The Media Control Services allow applications to provide media functions on connections at
virtual devices only. Essentially, the application manipulates media resources to provide the
necessary media functions.

The preconditions under which it is valid to invoke any of the Media Control Services (except
for etpAllocateResources() and etpDeallocateResources()) are as follows:

e The target connection must contain a virtual device identifier.

e The virtual device’s local connection state must be Connected, i.e., local connection state of
CS_CONNECT.

e All the resources necessary to perform the requested function must have been allocated to the
target connection.

e There must be no pending media activity on the target connection.

All the Media Control Services (except for etpAllocateResources() and etpDeallocateResources())
merely initiate the execution of media functions. A returned confirmation event indicates the
requested function has initiated. Unsolicited events are generated during the execution of
media functions initiated by Media Control Services. An application must use the related
unsolicited events to track the execution of the requested media function.

etpAllocateResources()

The etpAllocateResources() service allocates the specified media resources to an existing call or
a future outbound call.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>
RetCode_t etpAllocateResources (

ACSHandle t acsHandle,

InvokeID t invokelD,

ConnectionID t *call,

ConnectionID t *futuredJoinedCall,

ETPResourceLZst_t *resourcelist,

ETPUserDefinedCharacteristics t *userCharacteristics);
Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call
A pointer to the connection identifier of the call to which resources are to be allocated. In the

case of allocating resources for a future call, the call identifier contained in this parameter must
be set to ETP_NULL_CALL_ID.

futureJoinedCall

This parameter is reserved for future functionality. It should be set to ETP_NULL_CALL_ID.

resourceList

A pointer to a list of the required resources to be allocated. A call termination point alone may
be allocated by setting resourceList with no resources (blank). The capabilities of each
resource type are as follows:

RESOURCE TYPE

IDENTIFIER CAPABILITY

asr Automatic speech recognition used to recognize spoken words
signalDetector Detect dual-tone multi-frequency (DTMF) digits or dialed pulse (DP) digits
signalGenerator Send DTMF digits

player Play pre-recorded sound specified as files or variables

recorder Records caller voice into a Sound Media Object

ttsPlayer Play text from TEXT file

Note: Player, asr and tts are language dependent.

userCharacteristics

A pointer to a null terminated string, containing up to
ETP_USER_DEFINED_CHARACTERISTIC_LENGTH characters, that specifies a list of user-defined
characteristics used as input to the resource allocation algorithm. When resource allocation is
requested, the resource allocation algorithm is invoked to determine from which CTI server the
system should obtain the requested resources. The value assigned to userCharacteristics is
dependent upon the system configuration data. userCharacteristics contains call characteristics
(specific characteristics of a call) and/or call requirements (requirements placed by a call on the
CTI server). The syntax of the userCharacteristics parameter is specified (using Backus-Naur

Form) as follows:

<user_characteristics> ::= <characteristic_expression> |

<characteristic_expression>,<user_characteristics>

<characteristic_expression> ::= <call_characteristic> | <call_requirement>
<call_characteristic> = <identifier>

<call_requirement> ::= <identifier>=<MANDATORY | PREFERRED>
<identifier> = <letter> | <digit> |

<other_character> |<value><letter>
| <value><digit> |

<value><other_character>

<value> = <letter> | <digit> |
<other_character> |<value><letter>
| <value><digit> |

<value><other_character>

<letter> c=al|blc|dle[flglhliljilk|IImnjolplalris|tiu]v]|w]|x
|ylz|AIB|C|D|E|F|G|H[I[J|K|LIM|IN|O|P|QIR[S]|
TIUIVI|WI[X]|Y]|Z

<digit> ©=0]1]2|3]4|5|6|7]8]9

<other_character> g

The example below contains two call characteristics (vir custoMer and rouTer app), a
mandatory call requirement (rarce_server), and a preferred call requirement (Fast SERVER).

“VIP CUSTOMER,FAST SERVER=PREFERRED,ROUTER APP, LARGE SERVER=MANDATORY”

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPAllocateResourcesConfEvent message to
ensure that the service request has been acknowledged and processed by the server.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

Resources exist within physical media servers. When resources are successfully allocated to a
virtual device, a call termination point within one of the physical media servers is always
allocated. This applies to both existing calls and future calls. When resources are reallocated to
an existing call, the existing call termination point may be replaced with a new one within a
different physical media resource node.

In the case of allocating resources to an existing call, the resources are connected to the
specified connection. If the connection already has resources allocated to it, then a resource
reallocation occurs; (i.e., the existing resources are deallocated and the new ones allocated). If
the service does not complete successfully, then the previously allocated resources are
unchanged. The service may only be invoked on an existing connection when either the
connection is alerting with an inbound call or connected in speech with an inbound or outbound
call. Resource reallocation on a connection with an inbound alerting call is not permitted. If
resource reallocation is invoked on a connection having a media function active on it, then a
successful completion of the service results in the media function being terminated; otherwise
the media function is unaffected. Termination of an active media function as a result of
resource allocation will produce the appropriate media unsolicited events.

As described under cstaAnswerCall() and cstaMakeCall(), virtual devices have only limited
physical call handling capabilities. If an application wishes to perform any of the above services
on a virtual device, it must first allocate at least a call termination point to it. A call termination
point alone may be allocated by setting an empty resourceList parameter.

In the case of allocating resources to a future outbound call, the resources are merely reserved
so that they may be used later for establishing an outbound call from a virtual device. The
resource handle provided in ETPAllocateResourcesConfEvent is used in the cstaMakeCall()
service to establish the outbound call using the reserved resources. Resources allocated to a
future call must have a call established on them within a particular timeout period. If not, then the
resources are automatically deallocated and ETPResourceTimeoutEvent is sent. Resources
allocated to a future call may not be reallocated. To achieve this, an application must first deallocate
the resources via etpDeallocateResources() and then allocate new resources. When resources are
allocated for a future call but a cstaMakecCall() fails and a CSTAUniversalFailureEventConfEvent
is received, the allocated resources are not released and another cstaMakeCall() can be made with
the same resources. However, when a cstaMakecCall() fails and a cstaFailedEvent is received, the
resources allocated for the call are released.

When a call clears at a virtual device with resources allocated to it, the resources are
automatically deallocated.

For information about cstaAnswercCall() and cstaMakecCall(), refer to the ApplicationLink
Application Programmer’s Guide. The other services and confirmation events are described in
this chapter.

ETPAllocateResourcesConfEvent

ETPAllocateResourcesConfEvent provides a positive response from the server for a
previous etpAllocateResources() request, indicating the requested resources have been
successfully allocated.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct
InvokeID t invokelID;
union {

ETPAllocateResourcesConfEvent t allocateResources;
}ou;
} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPAllocateResourcesConfEvent t {
ETPResourceHandle t resources;
} ETPAllocateResourcesConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_ALLOCATE_RESOURCES_CONF, which identifies this message as an
ETPAllocateResourcesConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

resourceHandle

A handle to the allocated resources.

etpDeallocateResources()

The etpDeallocateResources() service deallocates previously allocated resources.

Syntax
#include <acs.h>

#include <csta.h>
#include <etp.h>

RetCode t etpDeallocateResources (

ACSHandle t acsHandle,
InvokeID t invokelD,
ETPResourceHandle t *resources) ;
Parameters
acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

resources

A handle to the resources to be deallocated. It is the handle returned in
ETPAllocateResourcesConfEvent after resources are allocated.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPDeallocateResourcesConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments
The resources to be deallocated may or may not be attached to an existing call. Deallocating
resources from a call also deallocates the call termination point from the call.

ETPDeallocateResourcesConfEvent

ETPDeallocateResourcesConfEvent provides a positive response from the server for a
previous etpDeallocateResources() request, indicating that the resources have been successfully
deallocated.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {

struct {

InvokeID t invokelID;

union {
ETPDeallocateResourcesConfEvent t deallocateResources;
bous
} etpConfirmation;
} event;

} ETPEvent t;
typedef struct ETPDeallocateResourcesConfEvent t {

Nulltype null;
} ETPDeallocateResourcesConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_DEALLOCATE_RESOURCES_CONF, which identifies this message as an
ETPDeallocateResourcesConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpCollectDigits()

The etpCollectDigits() service initiates the collection of DTMF or DP digits from an established
call in the Connected state. Optionally, it also provides the functions of the etpPlay() service.

Syntax

finclude <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpCollectDigits (

ACSHandle t acsHandle,
InvokeID t invokelID,
ConnectionID t *call,
ETPDigitDetectionType t detectionType,
Boolean B flushInputBuffer,
int initialTimeout,
int interDigitTimeout,
int maxNumberOfDigits,
ETPTerminationDigit t terminationDigits;
Boolean interruptPlay,
int messageld,
ETPPlayList t *playList);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call from which the digit collection is to be applied.

detectionType
Specifies the required type of digit detection. The options are:

e DTMF detection (ETP_DDT_DTMF)
e DP detection (ETP_DDT_DP)
e Simultaneous DTMF and DP detection (ETP_DDT_DTMFandDP)

e Unknown (ETP_DDT_UNKNOWN)

flushinputBuffer

If set to true, then any previously detected and buffered digits will be deleted before digit
detection is initiated; otherwise, the buffered digits are retained and considered as valid data.

initialTimeout
Specifies the timeout (in milliseconds) within which the first digit must be detected. The timeout

starts after the play function ends or, if no play function was requested, the timeout starts
immediately. Valid values are 0 to ETP_MAX_INIT_DIGIT_TIMEOUT, and ETP_NO_TIMEOUT.

interDigitTimeout

Specifies the timeout (in milliseconds) between which subsequent digits must be detected.
Valid values are 0 to ETP_MAX_INTER_DIGIT_TIMEOUT, and ETP_NO_TIMEOUT.

maxNumberOfDigits

Specifies the maximum number of digits to be collected after which digit detection is
terminated. The valid range is 1 to ETP_MAX_DIGITS.

terminationDigits

Specifies a null terminated string of digits.When one of these digits is detected, the collection is
terminated. The valid values for the digits are:

e DP:'O,1,2,3,4,5,'6,7,'8,Q
° DTMF: ‘OY, ‘1!, 52’, ‘3’, 541’ ‘5” 561’ ‘7’, ‘8!7 ‘9’, ‘*l, l#l

For both DP (Dial Pulse) and DTMF, the null string value signifies that no termination digit is
enabled.

interruptPlay

This parameter is only meaningful if a playList is provided. If interruptPlay is set to true, then
digit detection is enabled immediately and any detected digit will interrupt the play function. If
set to false, then digit detection is enabled upon completion of the play function.

messageld

Refer to etpPlay() for detailed information.

playList

Refer to etpPlay() for detailed information. A null value along with a zero value for the
messageld indicates that digit collection is to occur with no sound being played.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPCollectDigitsConfEvent message to ensure that
the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

Before this service can be completed successfully, the resources to be allocated must include
the resourcelist parameter value signalDetector as per etpAllocateResources().

If a valid messageld or a non-null playList parameter are specified, then, in addition to the
above specified resource, the resources are required to be allocated as per etpPlay().

When resources containing a signal detector are allocated, the signal detector detects DTMF
digits entered by the caller even before etpCollectDigits() is invoked for the first time on those
resources. DP digit detection is turned off until an etpCollectDigits() function is requested with
detectionType set to ETP_DDT_DP or ETP_DDT_DTMFandDP.

When etpCollectDigits() is requested with a specific detectionType, the detectionType remains
in effect until the next request.

When etpCollectDigits() is requested with flushinputBuffer set to false, the digits already entered
by the caller and stored by the system will be returned in the ETPCollectDigitsEndedEvent
even if the digits do not match the new request’s detectionType.

A universal failure event can be received in case the request failed. The cause for the request
failure can be one of the following:

FAILURE RESPONSE CAUSE DESCRIPTION
UNKNOWN_MEDIA_PORT Invalid or unknown call resource.
WRONG_MEDIA_PORT_STATE If digit collector resource (or player resource if required) is in

the wrong state.
NO_RESOURCE_ALLOCATED No digit collector or player (if a play list or message is
specified) resource allocated
INVALID_MAX_NUMBER_DIGITS Max digits specified is out-of-range.
INVALID_PLAY_LIST Invalid play list specified.
INVALID_DIGIT_DETECTION_TYPE Requested digit detection type invalid. Valid values are

ETP_DDT_DTMF, ETP_DDT_DP or
ETP_DDT_DTMFandDP

ETPCollectDigitsConfEvent

ETPCollectDigitsConfEvent provides a positive response from the server for a previous
etpCollectDigits() request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union { N
struct {
InvokeID t invokeID;
union {
ETPCollectDigitsConfEvent t collectDigits;
}ous
} etpConfirmation;
} event;

} ETPEvent t;

typedef struct ETPCollectDigitsConfEvent t {
Nulltype null;

} ETPCollectDigitsConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_COLLECT_DIGITS_CONF, which identifies this message as an
ETPCollectDigitsConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpDeleteMediaObject()

The etpDeleteMediaObject () service deletes a Media Object.

Syntax
#include <acs.h>

#include <csta.h>
#include <etp.h>

RetCode t etpDeleteMediaObject (ACSHandle t

acsHandle,
InvokeID t invokelID,
DevicelID t *devicelD,

ETPFileSpec t *fileSpec);

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

devicelD

Indicates from which media server is the Media Object to be deleted.

fileSpec

Full path and name of the Media Object to be deleted.
Return Values

This function returns the following values depending on whether the application is using library-
generated or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPDeleteMediaObjectConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

ETPDeleteMediaObjectConfEvent

ETPDeleteMediaObjectConfEvent provides a positive response from the server for a previous
etpDeleteMediaObject () request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_ t acsHandle;
EventClass t eventClass;
EventType_ t eventType;

} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {

struct |
InvokeID t invokeID;

union {
ETPDeleteMediaObjectConfEvent t deleteMediaObject;

}ou;
} etpConfirmation;
} event
} ETPEvent t;
typedef struct ETPDeleteMediaObjectConfEvent t ({
Nulltype null;

} ETPDeleteMediaObjectConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_DELETE_MEDIA_OBJECT_CONF, which identifies this message as an
ETPDeleteMediaObjectConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpPlay()

The etpPlay() service initiates the playing of a list of Media Objects on an established call in the
Connected state.

The play function has two behaviors:

e Simple Play Function: in this mode, all play objects are passed dynamically in a Play List.
To invoke this play mode, the Play Message ID passed in the Play request must be set to
zero

e Play Message Function: this mode initiates the playing of a pre-configured play message,
that consists of a sequence of static and dynamic media objects. To invoke this play mode,
the Play Message ID passed in the Play request must be set to a valid Message ID, as
configured in the OAS Configuration database.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpPlay (

ACSHandle t acsHandle,
InvokeID t invokelID,
ConnectionID t *call,
int messageld,
char *playList);
Parameters
acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The
parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call to which the sound objects are to be played.

messageld

Identifies the particular message (specified by a number between 1 and 65535) within the
system configuration database to be played. The message contains static (specified value)
and/or dynamic (specified parameter) media objects.

playList

A pointer to a null terminated string containing up to ETP_PLAY_LIST_LENGTH characters
(including the null character) that specifies a list of the play objects to be played. The list may
contain play objects of the following types:

e TTS objects

e Text Media Objects: The application specifies the name and path of the text media
object to play

e Text String: A text string passed dynamically

e Sound objects

Pre-recorded sound file: <sound_media_object>. The application specifies the name and
path of the sound media object to play, the offset in milliseconds from the beginning of the
sound media object from which to begin play, and the duration in milliseconds of play within
the media object.

A positive, negative, or unsigned number containing up to

ETP_MAX_PLAY_DIGITS digits (not including the sign character):

<signed_number>. For example, a number between -999999999999999 and
+999999999999999.

DateDMY (day-month-year): <date_dmy> DateMDY
(month-day-year): <date_mdy> DateDM (day-month):

<date_dm> DateMD (month-day): <date_md>

Timel2 (hour-minutes, 0:00 to 12:59 AM/PM): <time_hm> Time24
(hour-minutes, 0:00 to 23:59): <time_hm>

A string of characters up to ETP_MAX_PLAY_CHARACTER_STRING_SIZE
characters to be “spelled out” character-by-character:
<play_character_string>. The character string consists of 0-9, a-z, and A-Z.

Time duration in hours, minutes, and seconds (00:00:00 to 99:59:59): <duration>.

In the Simple Play Function mode, i.e. when the messageld is set to zero, the playList
(<play_object_list>) is specified using the following syntax (defined in Backus-Naur Form):

<play_object_list> = <play_sound_list> | <play_tts_list>

<play_sound_list> ;= <play_sound_object>; |

<play_sound_object>;<play_sound_list>

<play_sound_object> ::= SoundMediaObject=<sound_media_object> |
CharString=<play_character_string> | Number=<signed_number> |
DateDMY=<date_dmy> | DateMDY=<date_mdy> | DateDM=<date_dm>

| DateMD=<date_md> | Timel2=<time_hm> | Time24=<time_hm> |

Duration=<duration>

<play_tts_object>

.= TtsFile=<tts_ media_object > | TtsString=<tts_string>

<tts_media_object>

<media_object_spec>

<tts_string>

<tts_character> | <tts_character><tts_string>

<sound_media_object>

== <media_object_spec>,<offset_milliseconds>,

<duration_millisconds>

<offset_milliseconds>

::= <number>

<duration_milliseconds>

::= <number>

<media_object_spec>

= <media_object> |

<media_container><media_object>

<media_object>

::= <character_string>

<media_container>

::= <character_string>: |

<character_string>:<media_container>

<signed_number>

::= <number> | +<number> | -<number>

<number> = <digit> | <digit><number>
<date_dmy> = <digit><digit>-<digit><digit>-

<digit><digit><digit><digit>

Valid values are those of valid dates in day-month-year format.
<date_mdy> = <digit><digit>/<digit><digit>/

<digit><digit><digit><digit>

Valid values are those of valid dates in month-day-year format.

<date_dm> = <digit><digit>-<digit><digit>

Valid values are those of valid dates in day-month format.
<date_md> = <digit><digit>/<digit><digit>

Valid values are those of valid dates in month-day format.
<time_hm> = <digit><digit>:<digit><digit>

Valid values are those of valid time, 00:00 to 23:59.
<duration> = <digit><digit>:<digit><digit>: <digit><digit>

Valid values are those of valid hours, minutes and seconds, 00:00:00 to
99:59:59.

<character_string>

::= <character><character_string>

<character>

= <letter> | <digit> | <other_character>

<play_character_string>

.= <play_character><play_character_string>

<tts_character>

::= ASCII characters, as supported by the TTS

resources

<letter>

w=alblcldle[flglhliljlk[IIm[nfofp|qg|rs|tjulv]|w]xX
|YIZ|AIB|CID|E[F|GIH|I[J[KILIM[NJO|P|Q|R]|S]
TIU|IVIWI|X|Y|Z

<play_character>

w=alblcld|e|flglhliljlk[IIm[njo|plqlr|s[tju]v]w]x
|ylz|A|B|CID|E|F|IGIH[IJ|KILIMIN[O|P[Q|RIS]
TIUIVIWI[X|Y]|Z|0]1]2]3|4]5]6]7]8]9

Some letters may not be valid for certain languages.

<digit>

©=0]1]2]|3|4]5|6]7|8]9

<other_character>

The following is an example specification of a list of sound objects:

“SoundMediaObject=EnglishVoices:phone number is,0,0; CharString=8425006;"

Invoking etpPlay() on the above list will first play the entire (since an offset of 0 and
duration of 0 are specified) pre-recorded sound file “EnglishVoices:phone_number_is”
followed by the character string “8425006.”

In the Play Message Function mode, i.e. when the messageld is set to a valid, non-
zero value, the playList (<play_object_list>) is specified using the following syntax
(defined in Backus-Naur Form):

<play_object_parameter_list>

:= <play_sound_parameter_objects> |

<play_tts_parameter_objects>

<play_sound_parameter_objects

>

= <play_sound_parameter_object>; |
<play_sound_parameter_object>;

<play_sound_parameter_ objects>

<play_tts_parameter_objects>

= <play_tts_parameter_object>; |
<play_tts_parameter_object>;

<play_tts_parameter_ objects>

<play_sound_parameter_object>

= <sound_media_object> |

<play_character_string> |

<signed_number> |

<number> | <date_dmy> |

<date_mdy> | <date_dm> | <date_md> | <time_hm> |

<time_hm> | <duration>

<sound_media_object > (Same as described in previous table)
<signed_number>
<number>
<date_dmy>
<date_mdy>
<date_dm>
<date_md>
<time_12>
<time_24>
<duration>
<tts_media_object>

<tts_string>

The following is an example of a play message entry in the configuration database. Note the
following concerning the “Media Object Value” column:

e For static objects, the value is the name or value of the sound object to be played.

e For dynamic objects, the value indicates the position of the media object in the playList
(which matches the parameter number in the selected messageld).

Note: This sound media object (Account_number_is) is specified in the play
message as a relative path (relative to the default media container
\EnglishPrompts\, which in turn is relative to the root container path <installation
folder>\OAS\root_container.

1. The character string passed as the first element of the PlayList (ABC456) as “A B C four five
Six.”

2. The sound stored in the media object:
<installation folder>\OAS\root_container\ EnglishPrompts\Your_balance_is,0,0 (0,0 means play the entire file)

3. The sound stored in the media object:
<installation folder>\OAS\root_container\ EnglishPrompts\Your_balance_is,0,0 (0,0 means play the entire file)

Note: This sound media object (Your_balance_is) is specified in the play message
as a relative path (relative to the default media container \EnglishPrompts\, which in
turn is relative to the root container path <installation folder>\OAS\root_container).

1. The number passed as the second element of the playList (123) as “one hundred twenty
three.”

2. The sound stored in the media object
<installation folder>\OAS\root_container\US_currency\Dollars_and,0,0 (0,0 means play the entire file)

Note: This sound media object \US_currency\Dollars_and) is specified in the play
message as a full path (relative to the root container path <installation
folder>\OAS\root_container).

1. The number passed in the third element of playList (78) as “seventy eight.”

2. The sound stored in the media object:
<installation folder>\OAS\root_container\US_currency\Cents,0,0 (0,0 means play the entire file)

Note: This sound media object (\US_currency\Cents_and) is specified in the play
message as a full path (relative to the root container path <installation
folder>\OAS\root_container).

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPPlayConfEvent message to ensure that the
service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

If a playList contains any combination of sound objects, a player resource must be allocated. If
it contains any TTS objects, a ttsPlayer must be allocated.

Messages are configured and contained within the system configuration database. Each
message consists of a series of pre-recorded sound or text objects. The database specifies the
order in which the objects are to be played. These objects are either specified directly in the
database (static) or by the parameter passed by the application (dynamic).

ETPPlayConfEvent

ETPPlayConfEvent provides a positive response from the server for a previous etpPlay()
request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {

ETPPlayConfEvent t play;
}oug
} etpConfirmation;

} event;

} ETPEvent t;
typedef struct ETPPlayConfEvent t

{ Nulltype null;
} ETPPlayConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_PLAY_CONF, which identifies this message as an ETPPlayConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpRecognize()

The etpRecognize() service initiates Automatic Speech Recognition on an established call in the
Connected state. Optionally, it also provides the functions of the etpPlay() service.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpRecognize (

ACSHandle_t acsHandle,
InvokeID t invokelID,
ConnectionID t *call,
ETPGrammar *grammar,
Int initialTimeout,
Int finalTimeout,
Int maxTimeout,
int numberOfResults,
short interuptPlay,
short flushInputBuffer,
ETPCalllLogging_ t logging,
int messageld,
ETPPlaylList t *playList) ;
Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call from which the digit collection is to be applied.

grammar

String containing the name and path of the Grammar to be used for the recognition operation

initial Timeout
Specifies the initial silence timeout (in milliseconds) within which an utterance must be

detected. The timeout starts after the play function ends or, if no message is to be played,
immediately. Valid values are ETP_ASR_MIN_INIT_TIMEOUT to ETP_ASR_MAX_INIT_TIMEOUT.

finalTimeout

Specifies the silence timeout (in milliseconds)after the final utterance to indicate completion of
recognition. Valid values are ETP_ASR_MIN_FINAL_TIMEOUT to ETP_ASR_MAX_FINAL_TIMEOUT.

maxTimeout
Specifies the maximum time (including the play function time, if applicable), where the

recognize function is active. Valid values are ETP_ASR_MIN_MAXIMUM_TIMEOUT to
ETP_ASR_MAX_MAXIMUM_TIMEOUT.

numberOfResults

Number of top choices to be returned by the Engine. Valid values are from — 1 to
ETP_MAX_SPEECH_RESULTS.

interruptPlay

It is only meaningful if a play function is invoked. If interruptPlay is set to true, then the play
function will be interrupted if:

e an utterance is detected, in which case word recognition is enabled immediately

OR

o A DTMF tone is detected, in which case the word recognition is ended with a cause
ETP_MEC_INTERRUPTED_BY_DIGIT.

If interruptPlay is set to false, then word recognition is enabled upon completion of the play
function.

flushinputBuffer
Clear the DTMF buffer when the function is started. If this flag is set to false and one or more

DTFM digits were stored in the buffer, then recognize functions will end as soon as it is started
with cause ETP_MEC_INTERRUPTED_BY_DIGIT.

logging

Specifies whether the caller utterance should be recorded. Valid values are: 0 = no recording,
1 = record utterances.

messageld
Refer to etpPlay() for detailed information.
playList

Refer to etpPlay() for detailed information. A null value along with a zero value for the
messageld indicates that digit collection is to occur with no sound being played.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPRecognizeConfEvent message to ensure that
the service request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

Before this service can be completed successfully, the resources to be allocated must include
the resourcelist parameter value asr, and optionally a signalDetector if DTMF are also to be
detected as per etpAllocateResources().

If a valid messageld or a non-null playList parameter are specified, then, in addition to the
above specified resource, the resources are required to be allocated as per etpPlay().

See etpCollectDigits() for details on digit collection behavior when a signal detector has been
allocated. If no signal detector has been allocated, then any digits entered should be ignored.

ETPRecognizeConfEvent

ETPRecognizeConfEvent provides a positive response from the server for a previous
etpRecognize() request.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef

struct {

ACSHandle_ t acsHandle;
EventClass t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;

union {

ETPRecognizeConfEvent t

}ous

recognize;

} etpConfirmation;

} event;

} ETPEvent_t;

typedef struct ETPRecognizeConfEvent t {

Parameters

acsHandle

Nulltype null;
} ETPRecognizeConfEvent t;

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_RECOGNIZE_CONF, which identifies this message as an ETPRecognize

ConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

etpRecord()

The etpRecord() service initiates the recording of a sound object on an established call in the
Connected state.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h> RetCode t

etpRecord (

ACSHandle t acsHandle,

InvokeID t invokelID,

ConnectionID t *call,

long maximumDuration, long
minimumDuration,

long silenceThreshold,

Boolean stopOnDigitDetection,

ETPFileSpec t *fileSpec,

int beepFlag,

ETPMediaObjectsEncodingTypes t mediaObjectCodingType,
overwriteFlag);

int

Parameters

acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

call

A pointer to the connection identifier of the call to which the sound objects are to be played.

maximumDuration

The maximum duration, in milliseconds, allowed to record.

minimumDuration

If the recording function is terminated before the specified minimum duration (in milliseconds),
e.g. caller hangs up, or silence detected, then recording function is considered to have failed.

silenceThreshold

If silence is detected for at least that duration (specified in milliseconds, the recording function
is terminated.

stopOnDigitDetection

When this parameter’s value is set to true, the recording will be terminated when a DTMF digit
is detected. A signal detector must be already allocated before this function is called. The digit
buffer will be cleared when this is set to TRUE.

fileSpec

This is the name and path of the Media Object where the recording is to be stored. This is
optionally specified by the application. If the name is not specified by the application, then a
Media Object name will be assigned by the Media Server and, that Media Object will be
created in the Media Container set by the etpSetDefaultContainerPath, or the System default
Container Path, if the etpSetDefaultContainerPath was not requested for the current call.

beepFlag

If this paramater is set to true, the caller will hear a beep before the recording starts.

mediaObjectCodingType

Indicates the format in which the recorded voice should be encoded.

overwriteFlag

If this paramter is set to true, and the Media Object in which to store the recording already
exists, then the recording will overwrite the old recording in that Media Object. Otherwise the
function will fail.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPRecordEvent message to ensure that the service
request has been acknowledged and processed by the server and switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

A universal failure event can be received in case the request failed. The cause for the request
failure can be one of the following:

RESPONSE CAUSE DESCRIPTION
UNKNOWN_MEDIA_PORT If no associated call with the request
NO_RESOURCE_ALLOCATED No recorder or digit collector (if ‘stop on digit detection’ is set)
resource allocated

WRONG_MEDIA PORT_STATE If the recorder resource or associated call resource is not in the
correct state for the request

INVALID_MEDIA_OBJECT Improper file spec.

INVALID_MAX_DURATION Maximum duration setting is out-of-range or is less than the

minimum duration setting.

INVALID_MIN_DURATION Minimum duration setting is out-of-range.

INVALID_SILENCE_THRESHOLD Silence threshold setting is out-of-range.

ETPRecordConfEvent

ETPRecordConfEvent provides a positive response from the server for a previous etpRecord()
request.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass;
EventType_t eventType;

} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPRecordConfEvent t record;
}our
} etpConfirmation;
} event;

} ETPEvent t;

typedef struct ETPRecordConfEvent t {
DeviceID t mediaRepositoryId;
ETPFileSpec t fileSpec;

} ETPRecordConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_RECORD_CONF, which identifies this message as an ETPRecordConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

mediaRepositoryld

Indicates the ID of the Media Repository.

fileSpec
Full name/path of created Media Object.

etpSetDefaultContainerPath()

The etpSetDefaultContainerPath () service sets default container path to be appended to the
beginning of each SoundMediaObiject that starts with a colon (:) in any Media Functions such
as etpPlay, etpPlayMessage, etpCollectWords, etc. The new value applies until another
etpSetDefaultContainerPath or etpAllocateResource is called.

Syntax

#include <acs.h>
#include <csta.h>
#include <etp.h>

RetCode_t etpSetDefaultContainerPath (ACSHandle_t
acsHandle,
InvokeID t invokelID,
ETPResrouceHandle t *resources,
ETPDefaultContainerPath t *path) ;
Parameters
acsHandle

The handle for the opened ACS Stream.

invokelD

A handle provided by the application to be used for matching a specific instance of a function
service request with its associated confirmation event. This parameter is only used when the
invoke ID mechanism is set for application-generated identifiers in the acsOpenStream(). The

parameter is ignored by the ACS Library when the Stream is set for library-generated
identifiers.

resources

A handle to which the default container path is to be set. It is the handle returned in
ETPAllocateResourcesConfEvent after resources are allocated.

path

A null terminated string containing the new media container path to be set.

Return Values

This function returns the following values, depending on whether the application is using
library- or application-generated invoke identifiers:

e Library-generated Identifiers - If the function call completes successfully, it will return a
positive value (i.e., the invoke identifier). If the call fails, a negative error (<0) condition will
be returned. For library-generated identifiers, the return will never be zero (0).

e Application-generated Identifiers - If the function call completes successfully, it will return a
zero (0) value. If the call fails, a negative error (<0) condition will be returned. For
application-generated identifiers, the return will never be positive (>0).

The application should always check the ETPSetDefaultContainerPathConfEvent message to
ensure that the service request has been acknowledged and processed by the server and
switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL
A bad or unknown acsHandle was provided by the application.

ACSERR_STREAM_FAILED
A previously active ACS Stream has been abnormally aborted.

Comments

The new value applies until another etpSetDefaultContainerPath() Or etpAllocateResource() is
called. Upon successful etpAllocateResource(), the default container path is set to “User:”.

ETPSetDefaultContainerPathConfEvent

ETPSetDefaultContainerPathConfEvent provides a positive response from the server for a previous
etpSetDefaultContainerPath() request, indicating that the default container path has been
successfully set. The default container path will be prepended to the beginning of each
SoundMediaobject that starts with a colon (:) in a Media Function such as etpPlay,
etpPlayMessage, etpCollectwords, etc.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef

struct {

ACSHandle t acsHandle;
EventClass t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
InvokeID t invokeID;
union {
ETPSetDefaultContainerConfEvent t allocateResources;
boug
} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPSetDefaultContainerConfEvent t ({
Nulltype null;
} ETPSetDefaultContainerConfEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPCONFIRMATION, which identifies this message as an ETP confirmation event.

eventType

Tag value ETP_SET_DEFAULT_CONTAINER_CONF, which identifies this message as an
ETPSetDefaultContainerPathConfEvent.

invokelD

Specifies the function service request instance for the service that was processed at the server
or switch. This identifier is provided to the application when a service request is made.

STATUS REPORTING SERVICES

This chapter includes descriptions of all OAS-extended CSTA unsolicited events as well as
OAS-specific unsolicited events coming from the OAS system. In addition to the events
described here, all events supported by the ApplicationLink product are also supported. See
the ApplicationLink Application Programmer’s Guide for details.

This chapter includes:

e Common Call Event Reports
¢ Inter-application Communication Device Event Reports

e Media Service Event Reports

COMMON CALL EVENT REPORTS

This section covers the OAS-extended CSTA unsolicited events and OAS-specific unsolicited
events that can occur as a result of call activity on a device. Unless otherwise stated, the
events are relevant to all types of devices. The events provide the application with call status
information that can be used by the application in a variety of ways.

The following unsolicited events have additional functionality compared to how they are defined
in ApplicationLink Application Programmer’s Guide and Netware® Telephone Services™
Release 2 - Telephony Services Application Program Interface (TSAPI). They are described in
more detail below.

e CSTAConferencedEvent

e CSTAConnectionClearedEvent
e CSTADeliveredEvent

e CSTADivertedEvent

e CSTAEstablishedEvent

e CSTAQueuedEvent

e CSTATransferredEvent

CSTAConferencedEvent

The CSTAConferencedEvent report indicates that two separate calls have been conferenced
(merged) into a single call. This event is extended using the private data mechanism to accept
ETP_PD_AssociatedDatalnfo. This is the data previously associated with the call via the
etpAssociateData() service. For more information, refer to Appendix C, “ETP CSTA Private Data,”
ApplicationLink Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 -
Telephony Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP PD AssociatedDataInfo t {

char vendor [32]; unsigned
short length;
ETPAssociatedData t associatedData;

} ETP_PD AssociatedDatalnfo t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap
between the vendor parameter and the length parameter as well as the length parameter and
the associatedData parameter.

CSTAConnectionClearedEvent

The CSTAConnectionClearedEvent report indicates that a device associated with a call
disconnected or is dropped from the call. This event is extended using the private data
mechanism to accept ETP_PD_AssociatedDatalnfo. This is the data previously associated
with the call via the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP PD AssociatedDataInfo t {

char vendor [32]; unsigned
short length;
ETPAssociatedData t associatedData;

} ETP_PD AssociatedDatalInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap
between the vendor parameter and the length parameter as well as the length parameter and
the associatedData parameter.

CSTADeliveredEvent

The CSTADeliveredEvent report provides information about a call that is alerting (i.e., ringing)
at a specific device. This event is extended using the private data mechanism to accept
ETP_PD_AssociatedDatalnfo. This is the data previously associated with the call via the
etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,”ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP PD AssociatedDataInfo t {

char vendor [32]; unsigned
short length;
ETPAssociatedData t associatedData;

} ETP PD AssociatedDatalInfo t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap
between the vendor parameter and the length parameter as well as the length parameter and
the associatedData parameter.

CSTADivertedEvent

The CSTADivertedEvent report identifies a call that has been deflected or diverted from a
monitored device. This event is extended using the private data mechanism to accept
ETP_PD_AssociatedDatalnfo. This is the data previously associated with the call via the
etpAssociateData() Service.

For more information, refer to Appendix C, “ETP CSTA Private Data,”ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP PD AssociatedDataInfo t char
vendor [32];

unsigned short length;

ETPAssociatedData_t associatedData;
} ETP_PD AssociatedDatalInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{0x2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter. It is assumed that the byte
alignment for the structure is 1. In other words, there is no gap between the vendor parameter
and the length parameter as well as the length parameter and the associatedData parameter.

CSTAEstablishedEvent

The CSTAEstablishedEvent report indicates that a device connects to a call. This event is
extended using the private data mechanism to accept ETP_PD_AssociatedDatalnfo. This is
the data previously associated with the call via the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP PD AssociatedDataInfo t { char
vendor [32]; unsigned
short length;
ETPAssociatedData t associatedData;

} ETP_PD AssociatedDatalInfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{Ox2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter.

It is assumed that the byte alignment for the structure is 1. In other words, there is no gap

between the vendor parameter and the length parameter as well as the length parameter and
the associatedData parameter.

CSTAQueuedEvent

The CSTAQueuedEvent report indicates that a call has been queued at an Automatic Call
Distribution (ACD) group device. This event is extended using the private data mechanism to
accept ETP_PD_AssociatedDatalnfo. This is the data previously associated with the call via
the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP_PD AssociatedDatalInfo t {

char vendor [32]; unsigned
short length;
ETPAssociatedData_t associatedData;

} ETP _PD AssociatedDatalInfo t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{Ox2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter. It is assumed that the byte
alignment for the structure is 1. In other words, there is no gap between the vendor parameter
and the length parameter as well as the length parameter and the associatedData parameter.

CSTATransferredEvent

The CSTATransferredEvent report indicates that an existing call was transferred to another
device and the device that transferred the call is no longer part of the call (the transferring
device has been dropped from the call). This event is extended using the private data
mechanism to accept ETP_PD_AssociatedDatalnfo. This is the data previously associated
with the call via the etpAssociateData() service.

For more information, refer to Appendix C, “ETP CSTA Private Data,” ApplicationLink
Application Programmer’s Guide, and Netware® Telephone Services™ Release 2 - Telephony
Services Application Program Interface (TSAPI).

Syntax

The following structure shows only the relevant additional portions of the unions for this
message. For a complete description of the event structure, refer to Appendix C, “ETP CSTA
Private Data,” Chapter 7, “OAS Data Types,” and the Netware® Telephone Services™ Release
2 - Telephony Services Application Program Interface (TSAPI), the ACS Data Types and CSTA
Data Types sections.

typedef struct ETP PD AssociatedDatalInfo t {

char vendor [32]; unsigned
short length;
ETPAssociatedData_t associatedData;

} ETP_PD AssociatedDatalnfo_t;

Parameters

vendor

Stores the manufacturer object identifier. Must contain the following sequence:

{Ox2B, 0x0C, 0x02, 0x89, 0x3D, 0x28, 0x02, 0x00}
length

The length of the associated data that follows the length parameter.

associatedData

A buffer of up to MAX_LENGTH_ASSOCIATED_DATA bytes that contains the associated data.

Comments

The associated data must immediately follow the length parameter. It is assumed that the byte
alignment for the structure is 1. In other words, there is no gap between the vendor parameter
and the length parameter as well as the length parameter and the associatedData parameter.

INTER-APPLICATION COMMUNICATION DEVICE EVENT REPORTS

This section covers the unsolicited event reports that can occur as a result of monitoring Inter-
application Communication Devices (ICDs).

ETPReceivedMessageEvent

A monitoring application receives the unsolicited ETPReceivedMessageEvent report when a
message is sent on an ICD via the etpSendMessage() service.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType_ t eventType;

} ACSEventHeader t
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPReceivedMessageEvent _t receivedMessage;
}oug
} ETPUnsolicitedEvent;
} event;
} ETPEvent t;

typedef struct ETPReceivedMessageEvent t {
Message t message;

} ETPReceivedMessageEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECEIVED_MESSAGE, which identifies this message as an
ETPReceivedMessageEvent.

monitorCrossReflD

The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

message

The message received from the monitored ICD. It consists of the length of the message and
the message data itself.

Comments

Since applications on different platforms use different formats, the interpretation of the data is
the responsibility of the applications.

MEDIA SERVICE EVENTS REPORTS

This section covers the unsolicited events that can occur as a result of media activity on a
monitored virtual device. The events provide the application with media status information that
can be used by the application in a variety of ways.

ETPCollectDigitsEndedEvent

The ETPCollectDigitsEndedEvent report indicates that digit collection has ended.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.
typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {

ETPCollectDigitsEndedEvent t collectDigitsEnded;
}ou;
} etpUnsolicited;
} event;
} ETPEvent t;
typedef struct ETPCollectDigitsEndedEvent t {

ConnectionID_ t call;

ETPEventCause_t cause;

char detectedTerminationDigit;
ETPDigitsType t digitsType;
ETPDigitsList_t collectedDigits;

} ETPCollectDigitsEndedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_COLLECT_DIGITS_ENDED, which identifies this message as an
ETPCollectDigitsEndedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where digit collection ended.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION
ETP_MEC_INITIAL_TIMEOUT No digits entered prior to initial timeout.
ETP_MEC_INTER_DIGIT_TIMEOUT Interdigit timeout expired.
ETP_MEC_MAXIMUM_DIGITS Maximum digits entered.
ETP_MEC_TERMINATION_DIGIT Termination digit entered.
ETP_MEC_DISCONNECT Call disconnected during collect digits.

detectedTerminationDigits

Indicates which one of the Termination digits specified in the Collect Digits request was
detected if any. If no Termination Digits were detected, this parameter is set to null.

digitsType
Specifies the type of digits detected. The valid types are:

e DTMF digits (ETP_DDT_DTMF)

e DP digits (ETP_DDT_DP)

e DTMF and DP digits (ETP_DDT_DTMFandDP)

e Unknown digit type (ETP_DDT_UNKNOWN), which occurs under the following conditions:

e When a call arrives at a media server and if the user entered DTMF or DP digits before
the first etpCollectDigits() function is called, these digits are stored in the media server
buffer without indication of their type (i.e., DTMF or DP).

e When a caller does not input digits before the initialTimeout occurs.
collectedDigits

A null terminated string containing the collected digits (if any), including the termination digit (if
any). Each digit is represented by its corresponding character.

Comments

This event is generated after any OAS service that initiates the collection of digits from a call
and the collection is successful.

ETPCollectDigitsFailedEvent

The ETPCollectDigitsFailedEvent report indicates that digit collection has failed.
Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass;
EventType t eventType;

} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossReflID;
union {
ETPCollectDigitsFailedEvent t
collectDigitsFailed;
boug
} etpUnsolicited;
} event;
} ETPEvent t;
typedef struct ETPCollectDigitsFailedEvent t {
ConnectionID t call;
ETPEventCause_ t cause;

} ETPCollectDigitsFailedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_COLLECT_DIGITS_FAILED, which identifies this message as an
ETPCollectDigitsFailedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call on which digit collection failed.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION
ETP_MEC_PLAY_FAILED Attempt to play fails.
ETP_MEC_INTERNAL_ERROR Dialogic error attempting to start collecting digits.

Comments

This event is generated after any OAS service that initiates the collection of digits from a call
and the collection has failed.

ETPCollectDigitsStartedEvent

The ETPCollectDigitsStartedEvent report indicates that digit collection has started.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef

struct {
ACSHandle_t acsHandle; EventClass_t
eventClass; EventType t
eventType;
} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPCollectDigitsStartedEvent t

collectDigitsStarted;

}ous
} etpUnsolicited;
} event;
} ETPEvent_ t;

typedef struct ETPCollectDigitsStartedEvent t {
ConnectionID t call;
} ETPCollectDigitsStartedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_COLLECT_DIGITS_STARTED, which identifies this message as an
ETPCollectDigitsStartedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where digit collection started.
Comments

This event is generated after any OAS service that initiates the collection of digits from a call.
ETPDeleteMediaObjectCompletedEvent

The ETPDeleteMediaObjectCompletedEvent report indicates that a Media Object has been
deleted.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPDeleteMediaObjectCompletedEvent t mediaObjectDeleted;
bous
} etpUnsolicited;
} event;

} ETPEvent t;
typedef struct ETPDeleteMediaObjectCompletedEvent t
{
ETPFileSpec_t mediaObjectName; } ETPDeleteMediaObjectCompletedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_MEDIA_OBJECT_DELETED, which identifies this message as an
ETPDeleteMediaObjectCompletedEvent.

monitorCrossReflD

The handle to the CSTA association with which this event is associated. This handle is typically
chosen by OAS and should be used by the application as a reference to a specific established
association.

mediaObjectName

The name of the Media Object which was deleted successfully.

Comments

This event is generated after any OAS service that initiates the deletion of a Media Object from
a Media Repository and the deletion is successful.

The Media Repository in which the Media Object deletion was requested, must be monitored by
the application in order for that application to receive this unsolicited event.

ETPDeleteMediaObjectFailedEvent

The ETPDeleteMediaObjectFailedEvent report indicates that deletion of a Media Object from
a Media Repository has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {

ETPDeleteMediaObjectFailedEvent t mediaObjectDeleteFailed;
bou;
} etpUnsolicited;
} event;

} ETPEvent t;
typedef struct ETPDeleteMediaObjectFailedEvent t{

ETPFileSpec_t mediaObjectName;

ETPEventCause t cause;

} ETPDeleteMediaObjectFailedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_MEDIA OBJECT_DELETE_FAILED, which identifies this message as an
ETPDeleteMediaObjectFailedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established
association.

mediaObjectName

The name of the Media Object which deletion has failed.

cause

The reason for this event.
Comments

This event is generated after any OAS service that initiates the deletion of a Media Object from
a Media Repository and the deletion has failed.

The Media Repository in which the Media Object deletion was requested, must be monitored by
the application in order for that application to receive this unsolicited event.

ETPMediaObjectCreatedEvent

The ETPMediaObjectCreatedEvent report indicates that a Media Object has been created in
a Media Repository.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef

struct {
ACSHandle t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;
typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID_t monitorCrossRefID;
union { ETPMediaObjectCreatedEvent tmediaObjectCreated;
boug
} etpUnsolicited;
} event;

} ETPEvent t;

typedef struct ETPMediaObjectCreatedEvent t{
ETPFileSpec_t mediaObjectName;
ETPEventCause t cause;

} ETPMediaObjectCreafédEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_MEDIA_OBJECT_CREATED, which identifies this message as an
ETPMediaObjectCreatedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established
association.

mediaObjectName

The name of the Media Object which was created.

cause

The reason for this event.
Comments

This event is generated after any OAS service that creates a Media Object, e.g. an etpRecord()
request.

The Media Repository in which the Media Obiject is created, must be monitored by the
application in order for that application to receive this unsolicited event.

ETPPlayEndedEvent

The ETPPlayEndedEvent report indicates that the playing of either media objects or a
message on a connection has ended.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {
ACSHandle t acsHandle; EventClass t
eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader_ t eventHeader;
union {
struct {
CSTAMonitorCrossRefID_t monitorCrossRefID;
union {
ETPPlayEndedEvent t playEnded;
}our
} etpUnsolicited;

} event;
} ETPEvent t;

typedef struct ETPPlayEndedInfo t {
int interruptedElementIndex;
int interruptedOffset;
} ETPPlayEndedInfo t;

typedef struct ETPPlayEndedEvent t {

ConnectionID t call;
ETPEventCause_t cause;
ETPPlayEndedInfo t info;

} ETPPlayEndedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_PLAY_ENDED, which identifies this message as an ETPPlayEndedEvent.

monitorCrossReflD
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where the playing of sound ended.

cause

The reason for this event.

info

Provides supplementary information when sound playing ends or is interrupted. It can consist
of two pieces of information.

e interruptedElementindex. An index to the last element or the element that was interrupted
(the first element being given an index of 0). The element is either a sound object in a play
list or an entry (static or dynamic) in a play message.

o interruptedOffset. The offset in milliseconds from the start of the play list where the play
function ended or was terminated.

Comments

This event is generated after any OAS service that initiates the playing of sound on a call and
the playing is successful.

ETPPlayFailedEvent

The ETPPlayFailedEvent report indicates that the playing of either sound objects or a
message on a connection has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossReflID;
union {

ETPPlayFailedEvent t playFailed;
}oug
} etpUnsolicited;
} event;
} ETPEvent t;
typedef struct ETPPlayFailedEvent t {
ConnectionID t call;
ETPEventCause_t cause;
int invalidElementIndex;

} ETPPlayFailedEvent_t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_PLAY_FAILED, which identifies this message as an ETPPlayFailedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where the playing of sound has failed.

cause

The reason for this event.

invalidElementindex

Provides the supplementary information when an invalid sound element is detected.

It provides an index to the invalid element (the first element being given an index of
0). The element is either a media object in a play list or a variable in a message.

Comments

This event is generated after any OAS service that initiates the playing of sound on a call
and the playing has failed.

ETPPlayStartedEvent

The ETPPlayStartedEvent report indicates that the playing of either sound objects or a
message on a connection has begun.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPPlayStartedEvent t

playStarted;

}ous
} etpUnsolicited;
} event;

} ETPEvent t;

typedef struct ETPPlayStartedEvent t ({
ConnectionID t call;
ETPEventCause t cause;
} ETPPlayStartedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_PLAY_STARTED, which identifies this message as an ETPPlayStartedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call that has sound being played on it.

cause

The reason for this event.

Comments

This event is generated after any OAS service that initiates the playing of sound on a call.

ETPRecognizeEndedEvent

The ETPRecognizeEndedEvent report indicates that etpRecognize request has ended
successfully.

This event contains the Speech Recognition results which consist of the following inforation

e Speech results
¢ Interpretation of each result

¢ Natural Language information for each interpretation

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;
typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPRecognizeEndedEvent t *recognizeEnded;
}ous
} etpUnsolicited;
} event;
} ETPEvent t;

typedef struct ETPRecognizeSpeechResult t({
char szSpeech [ETP_MAX SPEECH RESULT LENGTH];
int nScore;
short nFirstInterpIndex;
// index into stInterps[] of first
// interpretation (a speech result can have
// multiple interpretations.
// nFirstInterpIndex
// points to the first one in the chain.
// See next section for discussion of
//stInterps[]).
short nNumberOfInterps;
// the number of successive interpretations
// (starting with
// nFirstInterpIndex) in this speech result
} ETPRecognizeSpeechResult t;
typedef struct ETPInterpretation_ t
// "Interpretation". This is something like:

// "command" "call" 10

// "person" "john doe" 10
// "department" "marketing" 10
// "phone" "2675" 10
{
short nFirstNlResult;
// index into stNlResults of first NL result in the
// interpretation (an interpretation can have
multiple NL

// results. nFirstNlResult points to the first one in the

// chain. See next section for discussion of
stNlResults
short nNumberOfNlResults; // the number of successive
//NL results (starting with
// nFirstNlResult) in this
interpretation

} ETPInterpretation_t;

typedef struct ETPRecognizeNlResult t{
char szSlot[ETP_MAX SLOT_ LENGTH];
char szSlotValue [ETP MAX SLOT VALUE LENGTH];
int nScore;
} ETPRecognizeNlResult t;
typedef struct ETPRecognizeEndedEvent t {
ConnectionID t call;

short nNumberOfSpeechResults;

ETPRecognizeSpeechResult t stSpeechResults [ETP_MAX SPEECH RESULTS];
ETPInterpretation t stInterps [ETP MAX INTERPS]; ETPRecognizeNlResult t
stNlResults [ETP _MAX NL RESULTS];

ETPEventCause_t cause;
Boolean bExceededMaxSpeechResults;
Boolean bExceededMaxInterps; Boolean

bExceededMaxNlResults;

Boolean bExceededMaxSpeechResultLength;
Boolean bExceededMaxSlotLength; Boolean

bExceededMaxSlotValueLength;

} ETPRecognizeEndedEvent t;

Note: the ETPRecognizeEndedEvent t member (see ETPRecognizeEndedEvent_t
*recognizeEnded above) of the ETPEvent_t is declared as a pointer unlike other
structures in this union. In the interest of communications efficiency, it was decided
to make it a pointer since this is a very large structure

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECOGNIZE_ENDED, which identifies this message as an
ETPRecognizeEndedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call on which collection of words ended.

nNumberOfSpeechResults

Number of results returned by the ASR engine.

stSpeechResults[ETP_MAX_SPEECH_RESULTS]

List of transcriptions of each speech recognition result. Includes index into stinterps array.

stinterps[ETP_MAX_INTERPS]

Each speech recognition result can have multiple NL interpretations. Each entry in this array
corresponds to a speech result has a starting index and range in the stNIResults array.

stNIResults[ETP_MAX_NL_RESULTS]

Each entry contains a slot, slot value and score. A subset of entries in this list is associated
with each speech recognition result.

cause

ETP_MEC_COMPLETED

bExceededMaxSpeechResults

Set to true if the stSpeechResults array has been filled up and there were more speech
results. Subsequent speech results and interpretations have been ignored.

bExceededMaxInterps

Set to true if the stinterps array is filled up. Further speech results can be added to the speech
results list but will have no interpretations or NL results.

bExceededMaxNIResults

Set to true if the stNIResults array is filled up. Further speech results can be added to the
speech results list but will have no NL results.

bExceededMaxSpeechResultLength

Set to true if a speech result string length exceeds the results field size
(ETP_MAX_SPEECH_RESULT_LENGTH). The string has been truncated.

bExceededMaxSlotLength

Set to true if a slot string length exceeds the results field size (ETP_MAX_SLOT_LENGTH).
The string has been truncated.

bExceededMaxSlotValueLength

Set to true if a slot value string length exceeds the results field size
(ETP_MAX_SLOT_VALUE_LENGTH). The string has been truncated.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the
speech recognition is successful.
ETPRecognizeFailedEvent

The ETPRecognizeFailedEvent report indicates that etpRecognize request has failed.
Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPRecognizeFailedEvent t recognizeFailed;
}ous
} etpUnsolicited;
} event;
} ETPEvent t;
typedef struct ETPRecognizeFailedEvent t {
ConnectionID t call; B

ETPEventCause_t cause;

Boolean bExceededMaxSpeechResults;
Boolean bExceededMaxInterps;

Boolean bExceededMaxNlResults;

Boolean bExceededMaxSpeechResultLength;
Boolean bExceededMaxSlotLength;

Boolean bExceededMaxSlotValueLength;

} ETPRecognizeFailedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECOGNIZE_FAILED, which identifies this message as an
ETPRecognizeFailedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where collection of words failed.

cause

The reason for this event.

bExceededMaxSpeechResults

Set to true if the stSpeechResults array has been filled up in building the related
ETPRecognizeEndedEvent event and there were more speech results.

bExceededMaxInterps

Set to true if the stinterps array has been filled up in building the related
ETPRecognizeEndedEvent event.

bExceededMaxNIResults

Set to true if the stNIResults array has been filled up in building the related
ETPRecognizeEndedEvent event.

bExceededMaxSpeechResultLength

Set to true if a speech result string length exceeds the results field size
(ETP_MAX_SPEECH_RESULT_LENGTH). The string has been truncated.

bExceededMaxSlotLength

Set to true if a slot string length exceeds the results field size (ETP_MAX_SLOT_LENGTH) in
building the related ETPRecognizeEndedEvent event.

bExceededMaxSlotValueLength

Set to true if a slot value string length exceeds the results field size
(ETP_MAX_SLOT_VALUE_LENGTH) in building the related ETPRecognizeEndedEvent
event.

EVENT CAUSE DESCRIPTION

ETP_MEC_STOPPED Sent when the media server stops recognition:
when the player fails at some point

when get a clear call and the ASR state is processing or

idle
ETP_MEC_INTERRUPTED_BY_DIGIT When the recognize process is interrupted by DTMF
ETP_MEC_NO_SPEECH When a stream ended message is

received and we haven’t detected the start of speech.
ETP_MEC_TOO_MUCH_SPEECH When a stream ended message is received and we haven't

detected the end of speech (a “SpeechEnded” event).
ETP_MEC_FAILED Other recognition failure (Nuance Rec

Client will log the cause).

ETP_MEC_RECOGNITION_REJECTED When you get a recognized event but the result code is
‘Reject’.

ETP_MEC_RECOGNITION_TOO_SLOW When you get a recognized event but the result code is
‘TooSlowTimeout'.

ETP_MEC_SPEECH_TOO_EARLY When you get a recognized event but the result code is
‘SpeechTooEarly’.

ETP_MEC_INVALID_GRAMMAR Attempting to start recognition processing at the engine
fails due to ‘unknown grammar’.

ETP_MEC_NOT_RECOGNIZED When the final timeout is reached, the ASR engine will try

to match ‘all' received utterances with the Grammar. If it
cannot make a match, it will return Not Recognized.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the
speech recognition has failed.

ETPRecognizeStartedEvent

The ETPRecognizeStartedEvent report indicates that etpRecognize request has started.
Syntax

The following structure shows only the relevant portions of the unions for this message. For a

complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader_ t eventHeader;
union {
struct {
CSTAMonitorCrossRefID_t monitorCrossRefID;
union {
ETPRecognizeStartedEvent t recognizeStarted;

}ous
} etpUnsolicited;
} event;
} ETPEvent t;

typedef struct ETPRecognizeStartedEvent t {
ConnectionID t call;
ETPEventCause_t cause;

} ETPRecognizeStartedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECOGNIZE_STARTED, which identifies this message as an
ETPRecognizeStartedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where the collection of words started.

cause

ETP_MEC_SUCCESSFUL.

Comments

This event is generated after any OAS service has initiated the etpRecognize request.

ETPRecordEndedEvent

The ETPRecordEndedEvent report indicates that the recording of a media object has ended,
that the recorded duration exceeds the ‘minimumDuration’ value specified in the etpRecord()
request, and that a file containing the recorded sound was created

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPRecordEndedEvent t recordEnded;
}our
} etpUnsolicited;
} event;

} ETPEvent t;

typedef struct ETPRecordEndedEvent t
{

ConnectionID t call;
DevicelID t mediaRepositoryId;
ETPFileSpec t mediaObjectName; long
duration;
ETPEventCause_t cause;

} ETPRecordEndedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECORD_ENDED, which identifies this message as an ETPRecordEndedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established
association.

call

The connection identifier of the call where the recording ended.

mediaRepositoryld

The cross reference ID of the Media Repository where the recording is stored

mediaObjectName

The name and path of the Media Object where the recording is stored

Duration

Time duration of play recording.

cause

The reason for this event.

EVENT CAUSE DESCRIPTION
ETP_MEC DETECTED DIGIT Digit detected during recording
ETP_MEC_DISCONNECT Call cleared during recording
ETP_MEC_MAXIMUM_DURATION Maximum recording duration reached
ETP_MEC_RESOURCE_ Resource reallocated during recording
REALLOCATION
ETP_MEC_SILENCE_DURATION Maximum silence detected during recording

Comments

This event is generated after any OAS service that initiates the recording of sound on a call
and the recording is successful.

ETPRecordFailedEvent

The ETPRecordFailedEvent report indicates that the recording of a sound object on a
connection has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader_ t eventHeader;
union {
struct {
CSTAMonitorCrossRefID_t monitorCrossRefID;
union {
ETPRecordFailedEvent t recordFailed;

}our
} etpUnsolicited;
} event;

} ETPEvent t;
typedef struct ETPRecordFailedEvent t

ConnectionID t call;
DevicelID t mediaRepositoryId;
ETPEventCause t cause;

} ETPRecordFailedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECORD_FAILED, which identifies this message as an ETPRecordFailedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by OAS and should be used by the application as a reference to a specific established
association.

call

The connection identifier of the call where the recording of sound has failed.

mediaRepositoryld

The cross reference ID of the Media Repository where the recording is stored.

cause

The reason for this event.
EVENT CAUSE

DESCRIPTION

ETP_MEC_CLOSE_MEDIA_OBJECT FAILED

Error closing recorded file

ETP_MEC_INTERNAL_ERROR

Attempt to open output file or recording started
then failed — either due to Dialogic error

ETP_MEC_INVALID_MEDIA_
OBJECT_ENCODING_TYPE

Invalid media type specified

ETP_MEC_MEDIA_OBJECT _ALREADY_EXISTS

File exists and no overwrite flag

ETP_MEC_INVALID_MEDIA_OBJECT

Invalid path or filename.

ETP_MEC_MINIMUM_ DURATION

Recording ended before minimum duration, due
to:

Digit detected
Call cleared

Maximum silence detected

ETP_MEC_UNKNOWN

Comments

Error detected by Dialogic

This event is generated after any OAS service that initiates the recording of sound on a call

and the recording has failed.

ETPRecordStartedEvent

The ETPRecordStartedEvent report indicates that the Recording of either sound objects or a

message on a connection has begun.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass;
EventType t eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;

union {
struct {
CSTAMonitorCrossRefID t
union {

ETPRecordStartedEvent t

}ous
} etpUnsolicited;
} event;
} ETPEvent t;

monitorCrossRefID;

RecordStarted;

typedef struct ETPRecordStartedEvent t
{

ConnectionID t call;

DeviceID_ t mediaRepositoryId;
} ETPRecordStartedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RECORD_STARTED, which identifies this message as an
ETPRecordStartedEvent.

monitorCrossReflD

The handle to the CSTA association with which this event is associated. This handle is typically
chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call that has sound being recorded on it.

mediaRepositoryld

The cross reference ID of the Media Repository where the recording is stored.

Comments

This event is generated after any OAS service that initiates the recording of sound on a call.

ETPResourceTimeoutEvent

The ETPResourceTimeoutEvent report indicates that previously allocated resources for a
future outbound call have not been attached to a call within the timeout period.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the

Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader_ t eventHeader;
union {
struct {
CSTAMonitorCrossRefID_t monitorCrossRefID;
union {
ETPResourceTimeoutEvent t resourceTimeout;
bous
} etpUnsolicited;
} event;
} ETPEvent t;

typedef struct ETPResourceTimeoutEvent t {
ETPResourceHandle t resources;

} ETPResourceTimeoutEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RESOURCE_TIMEOUT, which identifies this message as an
ETPResourceTimeoutEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

resources

A handle to the timed-out resources.

Comments

After this event is generated, the resources are automatically deallocated.

ETPResourcesAllocatedEvent

The ETPResourcesAllocatedEvent report indicates that an application has successfully
allocated resources to an existing call via the etpAllocateResources() service.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPResourcesAllocatedEvent t resourcesAllocated;
}ou;
} etpUnsolicited;
} event;

} ETPEvent t;

typedef struct ETPResourcesAllocatedEvent t { ConnectionID t call;
ETPResourceList_t resourcelList;
ETPResourceHandle_t resources;
ETPEventCause t cause;

} ETPResourcesAllocatedEvent;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RESOURCES_ALLOCATED, which identifies this message as an
ETPResourcesAllocatedEvent.

call

The connection to which the resources were allocated.

resourceList

The list of resources allocated to the call (i.e., the list of required resources specified in
etpAllocateResources() to be allocated).

resources

A handle to the timed-out resources.

cause

The reason for this event.
Comments
The event is sent in the following scenarios:

An application has successfully allocated resources to an existing call via the
etpAllocateResources() service.

An application has successfully reallocated resources to an existing call. Note that the
ETPResourcesDeallocatedEvent event is not sent in this scenario.

ETPResourcesDeallocatedEvent

The ETPResourcesDeallocatedEvent report indicates that the resources an application has
successfully allocated to an existing call via the etpAllocateResources() service have been
deallocated.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefIDit monitorCrossRefID;
union {
ETPResourcesDeallocatedEvent t

resourcesDeallocated;

boug
} etpUnsolicited;
} event;
} ETPEvent t;

typedef struct ETPResourcesDeallocatedEvent t {
ConnectionID t call;

ETPEventCause t cause;

} ETPResourcesDeallocatedEvent;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_RESOURCES_ALLOCATED, which identifies this message as an
ETPResourcesAllocatedEvent.

call

The connection from which the resources were deallocated.

cause

The reason for this event.

Comments

The event is sent in the following scenarios:

e An application has successfully deallocated resources from an existing call via the
etpDeallocateResources() service.

¢ An extension places a Basic Virtual Device (BVD) call on hold while having resources
allocated to it. The call is placed back in the CTI group and, hence, the resources are lost.

e Under some conditions when a call is unsuccessfully deflected away from a BVD while
having resources allocated to it.

e Under some conditions when resource reallocation across media servers or CTI servers fails
due to the deflection failing.

e A fault condition has occurred, resulting in the resources being spontaneously deallocated
from the call.

The event is not sent when a call is cleared down or diverted.

ETPSendDTMFEndedEvent

The ETPSendDTMFENndedEvent report indicates that the transmission of DTMFsignals on a
call has ended.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPSendDTMFEndedEvent t sendDTMFEnded;

}ous
} ETPUnsolicitedEvent;
} event;

} ETPEvent t;

typedef struct ETPSendDTMFEndedEvent t {
ConnectionID t call;
ETPEventCause_t cause;

} ETPSendDTMFEndedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SEND_DTMF_ENDED, which identifies this message as an
ETPSendDTMFEndedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where the transmission of DTMF signals has ended.

cause

The reason for this event.
Comments

This event is generated after any OAS service that initiates the transmission of a series of
DTMF signals on a call and the transmission has ended.

ETPSendDTMFFailedEvent

The ETPSendDTMFFailedEvent report indicates that the transmission of DTMF signals on a
call has failed.

Syntax

The following structure shows only the relevant portions of the unions for this message.
For a complete description of the event structure, refer to Chapter 7, “OAS Data Types,”
and the Netware® Telephone Services™ Release 2 - Telephony Services Application
Program Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.typedef

struct {
ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;
union {
ETPSendDTMFFailedEvent t

sendDTMFFailed;

}ous
} ETPUnsolicitedEvent;

} event;

} ETPEvent t;

typedef struct ETPSendDTMFFailedEvent t { ConnectionID_t
call;
ETPEventCause_ t cause;

} ETPSendDTMFFailedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SEND_DTMF_FAILED, which identifies this message as an
ETPSendDTMFFailedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where the transmission of DTMF signals has failed.

cause

The reason for this event.

Comments

This event is generated after any OAS service that initiates the transmission of a series of
DTMF signals on a call and the transmission has failed.

ETPSendDTMFStartedEvent

The ETPSendDTMFStartedEvent report indicates that the transmission of a series of DTMF
signals on a call has begun.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_ t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefIDit monitorCrossRefID;
union {
ETPSendDTMFStartedEvent t

sendDTMFStarted;

boug
} ETPUnsolicitedEvent;
} event;

} ETPEvent_t;

typedef struct ETPSendDTMFStartedEvent t {
ConnectionID t call;

} ETPSendDTMFStartedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SEND_DTMF_STARTED, which identifies this message as an
ETPSendDTMFStartedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where the transmission of DTMF signals has started.
Comments

This event is generated after any OAS service that initiates the transmission of a series of
DTMF signals on a call.

ETPSpeechDetectionEndedEvent

The ETPSpeechDetectionEndedEvent report indicates that the speech engine stopped
collecting the utterance.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program

Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {

ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID t monitorCrossRefID;

union {
ETPSpeechDetectionEndedEvent t
speechDetectionEnded;
}ous
} etpUnsolicited;
} event;

} ETPEvent t;

typedef struct ETPSpeechDetectionEndedEvent t {

ConnectionID t call;
ETPEventCause_t cause;
long seconds;
unsigned short millisecs;
short timezone;
short dstflag;

} ETPSpeechDetectionEndedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SPEECH_ENDED, which identifies this message as an
ETPSpeechDetectionEndedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where Speech detection ended.

cause

ETP_MEC_SUCCESSFUL.

seconds

Time in seconds since midnight (00:00:00), January 1, 1970, coordinated universal time (UTC).

millisecs

Fraction of a second in milliseconds.

timezone

Difference in minutes, moving westward, between UTC and local time.

dstflag

Nonzero if daylight savings time is currently in effect for the local time zone.

Comments

This event is generated after any OAS service has initiated the etpRecognize request and the
user has completed his utterance.

ETPSpeechDetectionStartedEvent

The ETPSpeechDetectionStartedEvent report indicates that the speech engine has detected
that the user has started an utterance.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct {

ACSHandle_t acsHandle;
EventClass t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct {
ACSEventHeader t eventHeader;
union {
struct {
CSTAMonitorCrossRefID_t monitorCrossRefID;
union {
ETPSpeechDetectionStartedEvent_t

speechDetectionStarted;
}ous

} etpUnsolicited;
} event;

} ETPEvent t;

typedef struct ETPSpeechDetectionStartedEvent t ({
ConnectionID t call;

ETPEventCause_t cause;

long seconds;
unsigned short millisecs;
short timezone;
short dstflag;

} ETPSpeechDetectionStartedEvent t;

Parameters

acsHandle

The handle for the opened ACS Stream.

eventClass

Tag value ETPUNSOLICITED, which identifies this message as an ETP unsolicited event.

eventType

Tag value ETP_SPEECH_STARTED, which identifies this message as an
ETPSpeechDetectionStartedEvent.

monitorCrossRefID
The handle to the CSTA association with which this event is associated. This handle is typically

chosen by the switch and should be used by the application as a reference to a specific
established association.

call

The connection identifier of the call where Speech Detection started.

cause

ETP_MEC_SUCCESSFUL.

seconds

Time in seconds since midnight (00:00:00), January 1, 1970, coordinated universal time (UTC).

millisecs

Fraction of a second in milliseconds.

timezone

Difference in minutes, moving westward, between UTC and local time.

dstflag

Nonzero if daylight savings time is currently in effect for the local time zone.
Comments

This event is generated after any OAS service has initiated the etpRecognize request and the
user has started his utterance

OAS DATA TYPES

For a listing of the data types used by the functions and events defined for the Open Application
Server API, view the header files:

¢ etp.h: Contains the OAS event types, event structures, and function prototypes.

o etpdefs.hContains the OAS data types.

o etpmediadefs.h:Contains the OAS data types for Media Services.

e csta.h: Contains the OAS csta event types, event structures, and function prototypes

e cstadefs.hContains all the OAS csta event data types

STRUCTURES

CallingDevicelD_t:

typedef ExtendedDeviceID t CallingDevicelID t;

CalledDevicelD_t:

typedef ExtendedDevicelID t CalledDeviceID t;
RedirectionDevicelD_t :

typedef ExtendedDeviceID t RedirectionDevicelID t;

SubjectDevicelD t :

typedef ExtendedDeviceID t SubjectDeviceID t;

ConnectionlID_t

CONNECTION IDENTIFIERS

A connection is the object that uniquely binds a call and a device. It is formed by combining a
call identifier with a device identifier. Connection identifiers are used extensively in CSTA to
make service requests. As defined in CSTA, a connection identifier may contain just a call
identifier or just a device identifier. However, for Application Link, both the device identifier and
the call identifier must be supplied for service requests.

The following is the structure for ConnectionID:

typedef struct ConnectionID t { long
callID; DevicelID t
devicelD;

ConnectionID Device t devIDType;

} ConnectionID t;

Refer to Chapter 3 CSTA Services in Application Link Programmer’s Guide for information on
how to make a connection.

ExtendedDevicelD t

typedef struct ExtendedDevicelID t {
DeviceID_t devicelD;
DeviceIDType t deviceIDType;
DeviceIDStatus t devicelIDStatus;

} ExtendedDevicelID t;

typedef enum DeviceType t {
DT STATION = O,

DT LINE = 1,
DT_BUTTON = 2,

DT _ACD = 3, DT_TRUNK
= 4, DT_OPERATOR =
S,

DT _STATION GROUP = 16,
DT_LINE_GROUP = 17,

DT _BUTTON_GROUP = 18,
DT _ACD GROUP = 19,
DT_TRUNK_GROUP = 20,
DT_OPERATOR GROUP = 21,

DT TSAPIEx = 253, // New device for MTAP
DT OTHER = 255

} DeviceType t;

T

typedef enum CallType t ({
CT _AUDIO = O,

CT VIDEO = 1,
CT_AUDIO _VIDEO = 2
} CallType t;

APPENDIX A TSAPI SERVICES SUPPORTED

The following tables list the TSAPI APIs and whether they are supported by the Open
Application Server. The tables are:

e TSAPI Control Services and Confirmation Events

e TSAPI Switching Function Services and Confirmation Events TSAPI Status Reporting
Services and Confirmation Events TSAPI Snapshot Reporting Services and Confirmation
Events

e TSAPI CSTA Computing Function Services and Confirmation Events

TSAPI Escape and Maintenance Services and Confirmation Events

In addition, note the following concerning TSAPI services supported by OAS:

OAS supports static connection ID devices, not dynamic connection ID devices. Therefore,

ConnectionID_Device must always be set to STATIC_ID.

TSAPI Control Services and Confirmation Events
SUPPORTED

PROGRAM CALL

NOT SUPPORTED

acsAbortStream()

X

acsCloseStream()

ACSCloseStreamConfEvent

acsOpensStream()

ACSOpenStreamConfEvent

X | X | X | X

acsQueryAuthinfo()

ACSUniversalFailureConfEvent

ACSUniversalFailureEvent

cstaGetAPICaps()

CSTAGetAPICapsConfEvent

X | X | X | X

cstaGetDevicelList()

CSTAGetDeviceListConfEvent

TSAPI Switching Function Services and Confirmation Events

PROGRAM CALL

SUPPORTED

NOT SUPPORTED

cstaAlternateCall()

X

CSTAAlIlternateCallConfEvent

cstaAnswerCall()

CSTAAnswerCallConfEvent

cstaCallCompletion()

CSTACallCompletionConfEvent

X | X | X | X | X

cstaClearCall()

CSTACIlearCallConfEvent

cstaClearConnection()

CSTACIlearConnectionConfEvent

cstaConferenceCall()

CSTAConferenceCallConfEvent

cstaConsultationCall()

CSTAConsultationCallConfEvent

cstaDeflectCall()

CSTADeflectCallConfEvent

cstaGroupPickupCall()

CSTAGroupPickupCallConfEvent

X |IX | X | X | X |X|X|X|X|X

cstaHoldCall()

CSTAHoldCallConfEvent

cstaMakeCall()

CSTAMakeCallConfEvent

cstaMakePredictiveCall()

CSTAMakePredictiveCallConfEvent

cstaPickupCall()

CSTAPickupCallConfEvent

cstaReconnectCall()

CSTAReconnectCallConfEvent

cstaRetrieveCall()

CSTARetrieveCallConfEvent

cstaTransferCall()

CSTATransferCallConfEvent

cstaSetAgentState()

CSTASetAgentStateConfEvent

cstaSetDoNotDisturb()

CSTASetDoNotDisturbConfEvent

cstaSetForwarding()

CSTASetForwardingConfEvent

XIX[|X|X[IX|IX|X|X|X|X|X|X|X|X|X|X|X|X|X|X

cstaSetMsgWaitingInd()

CSTASetMsgWaitinglndConfEvent

cstaQueryAgentState()

CSTAQueryAgentStateConfEvent

cstaQueryDevicelnfo()

CSTAQueryDevicelnfoConfEvent

cstaQueryDoNotDisturb()

CSTAQueryDoNotDisturbConfEvent

cstaQueryForwarding()

CSTAQueryForwardingConfEvent

X | X | X | X | X |X|X|X

cstaQueryLastNumber()

CSTAQueryLastNumberConfEvent

cstaQueryMsgW aitingInd()

CSTAQueryMsgW aitingindConfEvent

X | X | X | X

CSTAUniversalFailureConfEvent

TSAPI Status Reporting Services and Confirmation Events

PROGRAM CALL

SUPPORTED

NOT SUPPORTED

cstaMonitorDevice()

X

cstaMonitorCall()

cstaMonitorCallsViaDevice()

CSTAMonitorConfEvent

cstaMonitorStop()

CSTAMonitorStopConfEvent

cstaChangeMonitorFilter()

CSTAChangeMonitorFilterConfEvent

CSTAMonitorEndedEvent

X | X | X | X | X |X

CSTACallClearedEvent

CSTAConferencedEvent

CSTAConnectionClearedEvent

CSTADeliveredEvent

CSTADivertedEvent

CSTAESstablishedEvent

CSTAFailedEvent

CSTAHeldEvent

CSTANetworkReachedEvent

CSTAOriginatedEvent

CSTAQueuedEvent

CSTARetrievedEvent

CSTAServicelnitiatedEvent

CSTATransferredEvent

X|IX | X | X | X|X|X|X|X|X|X|X]|X

CSTACallinfoEvent

CSTADoNotDisturbEvent

CSTAForwardingEvent

CSTAMessageWaitingEvent

CSTALoggedOnEvent

CSTALoggedOffEvent

CSTANotReadyEvent

CSTAReadyEvent

CSTAWorkNotReadyEvent

X | X | X | X | X

CSTAWorkReadyEvent

TSAPI Snapshot Reporting Services and Confirmation Events

PROGRAM CALL SUPPORTED NOT SUPPORTED
cstaSnapshotCallReq() X
CSTASnapshotCallConfEvent X
cstaSnapshotDeviceReq() X
CSTASnapshotDeviceConfEvent X

TSAPI CSTA Computing Function Services and Confirmation Events

PROGRAM CALL

SUPPORTED

NOT SUPPORTED

cstaRouteRegisterReq()

X

CSTARouteRegisterRegConfEvent

cstaRouteRegisterCancel()

CSTARouteRegisterCancelConfEvent

CSTARouteRegisterAbortEvent

CSTARouteRequestEvent

CSTAReRouteEvent

cstaRouteSelect()

CSTARouteUsedEvent

CSTARouteEndEvent

cstaRouteEnd()

X | X | X | X | X|X|X|X]|X

TSAPI Escape and Maintenance Services and Confirmation Events

PROGRAM CALL

SUPPORTED

NOT SUPPORTED

cstaEscapeService()

x*

CSTAEscapeServiceConfEvent

x*

CSTAPrivateEvent

x*

CSTAPrivateStatusEvent

x*

CSTABackInServiceEvent

CSTAOutOfServiceEvent

cstaSysStatReq()

CSTASysStatReqConfEvent

cstaSysStatStart()

CSTASysStatStartConfEvent

cstaSysStatStop()

CSTASysStatStopConfEvent

cstaChangeSysStatFilter()

CSTAChangeSysStatFilterConfEvent

CSTASysStatEvent

X | X[X | X|X|X|X|X|X|X|X

CSTASysStatEndedEvent X

*In OAS, no escape services are defined. However, additional services (e.g., Media Services) are implemented as API calls.

APPENDIX B UNIVERSAL FAILURE EVENTS

Confirmation events defined for each service are sent as a positive response from the server
for a previous service request. When the requested function service fails, an application can
receive a universal failure event instead of a confirmation event. There are two types of
universal failure events:

e CSTAUniversalFailureConfEvent

e ETPUniversalFailureConfEvent

CSTAUniversalFailureConfEvent

For information about the CSTAUniversalFailureConfEvent, refer to Chapter 5, “Switching
Function Services,” in Netware® Telephone Services™ Release 2 - Telephony Services
Application Program Interface (TSAPI).

ETPUniversalFailureConfEvent

The ETPUniversalFailureConfEvent provides a generic negative response from the server for
a previously requested OAS (ETP) service. It is sent in place of any confirmation event when
the requested function fails.

Syntax

The following structure shows only the relevant portions of the unions for this message. For a
complete description of the event structure, refer to Chapter 7, “OAS Data Types,” and the
Netware® Telephone Services™ Release 2 - Telephony Services Application Program
Interface (TSAPI), the ACS Data Types and CSTA Data Types sections.

typedef struct
{

ACSHandle t acsHandle;
EventClass_t eventClass; EventType t
eventType;

} ACSEventHeader t;

typedef struct
{

ACSEventHeader t eventHeader; Union {

Struct {
InvokeID t invokeID;
union {
ETPUniversalFailureConfEvent t

etpUniversalFailure;
}ous
} etpConfirmation;
} event;
} ETPEvent t;

typedef struct ETPUniversalFailureConfEvent t {

ETPUniversalFailure t error;

} ETPUniversalFailureConfEvent t;

typedef enum ETPUniversalFailure t ({
ETP ERROR START=2000, BAD PARAMETER,

CCS_OUT_OF_SERVICE, //Not used
EMPTY PLAY LIST, INTERNAL ERROR,
INVALID_FINAL TIMEOUT,
INVALID_ INITIAL TIMEOUT,
INVALID_INTER DIGIT_TIMEOUT,
INVALID MAX NUMBER_DIGITS,
INVALID_MAX_NUM WORDS, //Not used
INVALID MIN_NUM WORDS, //Not used
INVALID _NO_DIGIT TIMEOUT, INVALID PLAY LANGUAGE,
INVALID PLAY LIST, INVALID TERMINATION_ DIGIT,
INVALID VOCABULARY ID, //Not used
MEDIA PORT OUT_OF_SERVICE, //Not used
NO_RESOURCE_ALLOCATED, RESOURCE_NOT_ AVAILABLE,
UNKNOWN_ETP_FAILURE,
UNKNOWN_MEDIA PORT, WRONG_MEDIA PORT_STATE,
INVALID DIGIT DETECTION_TYPE,
INVALID MAX_ DURATION,
INVALID MEDIA OBJECT ENCODING_TYPE,

INVALID MEDIA OBJECT,
INVALID MIN DURATION,

INVALID SILENCE THRESHOLD,

MEDIA OBJECT DOES NOT EXIST,

REMOTE_PARTY_ BUSY, //Not used
OPEN_FILE FAILED,
OPEN_MEDIA OBJECT FAILED,
CLOSE_MEDIA_OBJECT_FAILED, //Not used
READ MEDIA OBJECT FAILED,

WRITE_MEDIA OBJECT_FAILED,

DELETE MEDIA OBJECT FAILED, //Not used

READ FILE FAILED, //Not used
WRITE_FILE_FAILED, //Not used
CLOSE_FILE FAILED, //Not used

INCORRECT RESOURCES,
RESPONSE_TIMEOUT, INVALID CALL STATE,
LICENSE NOT AVAILABLE,
DEFLECT ASSOCIATE DATA FAILED,
RESOURCE_SERVER_LOADED, EMPTY DTMF LIST,
INVALID NUMBER OF RESULTS
} ETPUniversalFailure t;

ERRORS

Error values indicate that an error has been returned while performing OAS functions. Specific
error values are:

BAD_PARAMETER
One or more of the supplied parameter values are invalid.
CCS_OUT_OF_SERVICE

Reserved for future use.

CLOSE_MEDIA_OBJECT_FAILED

Unable to close the media object that was previously opened.

DEFLECT_ASSOCIATE_DATA_FAILED

Reserved for future use.

EMPTY_DTMF_LIST

A service was requested to collect digits with an empty dtmflist.

EMPTY_PLAY_LIST

A service was requested to play media objects with an empty playList.

INCORRECT_RESOURCES

A resource allocation service has been requested, but the resources requested are invalid or
cannot be combined (e.g., player).

INTERNAL_ERROR

A service did not execute due to an internal error condition.

INVALID_CALL_STATE

An attempt was made to clear an unknown call.

INVALID_DIGIT_DETECTION_TYPE

A collect digits service was requested with an invalid digit detection type specified.

INVALID_FINAL_TIMEOUT

A service was requested to collect words with an invalid final timout parameter.

INVALID_INITIAL_TIMEOUT

A service was requested to collect words with an invalid initial timout parameter.

INVALID_INTER_DIGIT_TIMEOUT

A service was requested to collect digits with an invalid inter-digit timout parameter.

INVALID_MAX_DURATION

A record service was requested with a maximum duration out-of-range.

INVALID_MAX_NUMBER_DIGITS

A service was requested to collect digits with an invalid maximum number of digits parameter.

INVALID_MAX_NUM_WORDS

A service was requested to collect words with an invalid maximum number of words parameter.

INVALID_MEDIA_OBJECT

A service was requested to record with an invalid media object name.

INVALID_MEDIA_OBJECT_ENCODING_TYPE

A service was requested to record with an invalid media object type.

INVALID_MIN_DURATION

A record service was requested with a minimum duration out-of-range.

INVALID_MIN_NUM_WORDS

A service was requested to collect words with an invalid minimum number of words parameter.

INVALID_NO_DIGIT_TIMEOUT

A service was requested to collect digits with an invalid no digit timeout parameter.

INVALID_NUMBER_OF_RESULTS

A recognize service was requested with an invalid number of results specified.

INVALID_PLAY_LANGUAGE Reserved for future use. INVALID_PLAY_LIST

A service was requested to play media objects with an invalid playList.

INVALID_SILENCE_THRESHOLD

A record service was requested with an invalid silence threshold value.
INVALID_TERMINATION_DIGIT

A service was requested to collect digits with an invalid termination digit parameter.
INVALID_VOCABULARY_ID

A service was requested to collect words with an invalid vocabulary parameter.
LICENSE_NOT_AVAILABLE

Allocate Resource for ASR/TTS resource is requested but the license for that resource is not
available.

MEDIA_OBJECT DOES_NOT_EXIST
A service was requested on a media object which doesn’t exist.
MEDIA_PORT_OUT_OF_SERVICE Reserved for future use. NO_RESOURCE_ALLOCATED

A media service was requested, but the necessary resources have not previously been
allocated.

OPEN_FILE_FAILED

A service was requested on a media object that cannot be read to copy data from that media
object.

OPEN_MEDIA_OBJECT_FAILED

A service was requested on a media object that cannot be opened.
READ_MEDIA_OBJECT_FAILED

A service was requested on a media object to which data cannot be copied.
REMOTE_PARTY_BUSY

A make call service was requested, but the remote party is not available.

RESOURCE_NOT_AVAILABLE

A resource allocation service has been requested, but the required resources are not available.
RESOURCE_SERVER_LOADED

No free channel is available in any suitable Media Server for this allocate resource request.
RESPONSE_TIMEOUT

The time within which a response is expected has expired.
WRITE_MEDIA_OBJECT_FAILED

A service was requested on a mediaobject to which data cannot be written.

UNKNOWN

A service did not execute due to an unknown error condition.

UNKNOWN_MEDIA_PORT

A service request was made on an unknown media port identifier.
WRONG_MEDIA_PORT_STATE

A service was requested when the media port is not in a state to process it.

APPENDIX C ETP CSTA PRIVATE DATA

Using ECMA CSTA’s private data mechanism, Mitel has extended the standard features of
CSTA to allow OAS applications to invoke OAS-specific features.

This appendix discusses:

e ECMA CSTA private data mechanism
e Manufacturer object

o identifier TSAPI private

e data structure ETP

e private data

ECMA CSTA PRIVATE DATA MECHANISM

As per the ECMA CSTA protocol ECMA-180, the private data mechanism includes
CSTAPrivateData, which is defined in ASN.1 (Abstract Syntax Notation 1) as follows:

CSTAProviderDATA ::= [APPLICATION 30] IMPLICIT SEQUENCE
{
manufacturer OBJECT IDENTIFIER, ANY
DEFINED BY manufacturer

}

For each private data, a uniqgue manufacturer object identifier has been defined according to
ISO 6523 object identifier recommendation.

For information about the OBJECT IDENTIFIER, see “Manufacturer Object Identifier.” For
information about ANY DEFINED BY, see “TSAPI Private Data Structure.”

MANUFACTURER OBJECT IDENTIFIER

Each private data is identified by a unique object identifier. OBJECT IDENTIFIER data type is
defined by ASN.1 syntax notation as follows:

ISO(1) identified-organization(3) icd-ecma(12) member-company(2)

ericsson(1213) Open Application Server(40) private(xx) The value xx in private data identifies
the type of private data.

TSAPI PRIVATE DATA STRUCTURE

Each manufacturer object identifier defines a specific structure and the length of the structure.

Syntax

On the API level, PrivateData is defined by TSAPI as follows:

typedef struct PrivateData t ({

char vendor [32];
unsigned short length;
char datall];

} PrivateData_ t;

Parameters

vendor

32-byte parameter that stores the manufacturer object identifier. The vendor parameter

contains the following:

vendor [0] = 0x2B; /* iso(l) and identified-organization (3) in one node*/
vendor[1] = 0x0C; /* icd-ecma (12) */

vendor[2] = 0x02; /* member-company (2) */

vendor[3] = 0x89; /* ericsson (first of two parts) */

vendor[4] = 0x3D; /* ericsson (second of two parts) */

vendor [5] = 0x28; /* Open Application Server (40) */

vendor [6] = /* defined for each type of private data */

vendor[7] = 0x00; /* NULL terminator */

length

The length of the data portion (if there is any) of the private data structure that follows the
length parameter. If no data portion follows the length parameter, then the length must be
specified as 0 (zero).

data

The data parameter, if there is any.

Example

To store the manufacturer object identifier for the private data in the cstaMakecCall() service, the
vendor parameter contains the following:

vendor [0] = 0x2B; /* iso(l) and identified-organization (3) in one node*/
vendor[1l] = 0x0C; /* icd-ecma (12) */
vendor[2] = 0x02; /* member-company (2) */
vendor [3] = 0x89; /* ericsson (first of two parts) */
vendor[4] = 0x3D; /* ericsson (second of two parts) */
vendor [5] = 0x28; /* Open Application Server (40) */
vendor[6] = 0x03; /* specifies that this is MakeCallVendorID private
data*/
vendor[7] = 0x00; /* NULL terminator */
Comments

Note the following:

e For each extended CSTA service, confirmation, or unsolicited event, the exact structure for
private data is specified.

e The structure must have the same exact parameters and lengths specified;
otherwise, the data is considered invalid.

ETP PRIVATE DATA

The following services can pass private data to the OAS client library. See Chapter 5,
“Switching Function Services,” for details.

cstaDeflectCall()
cstaMakeCall()

cstaMonitorDevice()

The following unsolicited events can pass private data to the OAS client library. See Chapter 6,
“Status Reporting Services,” for details.

CSTAConferencedEvent
CSTAConnectionClearedEvent
CSTADeliveredEvent
CSTADivertedEvent
CSTAEstablishedEvent
CSTAQueuedEvent
CSTATransferredEvent

D(] Mltel I mitel.com

