
A MITEL
PRODUCT
GUIDE

Mitel OpenScape Contact
Center V12
OpenMedia Framework

OpenMedia Framework

Programming Guide
10/2024

A31003-S22C0-R101-01-7620

Notices

The information contained in this document is believed to be accurate in all respects but is not warranted by Mitel
Europe Limited. The information is subject to change without notice and should not be construed in any way as
a commitment by Mitel or any of its affiliates or subsidiaries. Mitel and its affiliates and subsidiaries assume no

responsibility for any errors or omissions in this document. Revisions of this document or new editions of it may be
issued to incorporate such changes. No part of this document can be reproduced or transmitted in any form or by

any means - electronic or mechanical - for any purpose without written permission from Mitel Networks Corporation.

Trademarks

The trademarks, service marks, logos, and graphics (collectively “Trademarks”) appearing on Mitel’s Internet
sites or in its publications are registered and unregistered trademarks of Mitel Networks Corporation (MNC) or
its subsidiaries (collectively “Mitel), Unify Software and Solutions GmbH & Co. KG or its affiliates (collectively

“Unify”) or others. Use of the Trademarks is prohibited without the express consent from Mitel and/or
Unify. Please contact our legal department at iplegal@mitel.com for additional information. For a list of the

worldwide Mitel and Unify registered trademarks, please refer to the website: http://www.mitel.com/trademarks.

© Copyright 2024, Mitel Networks Corporation

All rights reserved

1

Contents
1. About the OpenMedia Framework ... 3

OpenMedia Framework solution overview .. 3

Simple OpenMedia flow example ... 3

Simple OpenMedia External Media flow example .. 5

2. OpenMedia Framework prerequisites ... 6

3. OpenMedia commands ... 7

Connector Registration ... 7

OpenMedia Object ... 7

Connector Registration Response .. 8

UserCredentials Object .. 8

New Contact .. 9

Source Object .. 9

PublishedObject Object .. 10

Destination Object .. 10

AdditionalInfos Object .. 11

InReplyTo Object ... 11

ContactData Object ... 11

Attachment Object .. 11

Tag Object .. 11

New Contact Response .. 13

Keep Alive ... 13

Keep Alive Response .. 14

Listen For Events .. 14

Listen For Events Response ... 14

Listen For Events Response Object ... 14

4. OpenMedia Requests from OpenScape Contact Center to Connector 16

Outgoing Publication ... 16

Source Object .. 16

ObjectToBePublished Object ... 17

Destination Object .. 17

InReplyTo Object ... 17

Attachment Object .. 17

Outgoing Publication Response .. 18

Stream Request .. 19

2

Stream Response ... 20

OrderedItem Object ... 20

InReplyTo Object ... 21

Source Object .. 21

AdditionalInfo Object .. 21

5. OpenMedia Events .. 24

DeliveredOpenMediaEvent ... 24

Source Object .. 24

PublishedObject Object .. 25

Destination Object .. 26

EstablishedEvent .. 27

HeldOpenMediaEvent ... 28

Source Object .. 28

PublishedObject Object .. 28

Destination Object .. 29

RetrievedOpenMediaEvent ... 31

Source Object .. 31

PublishedObject Object .. 31

Destination Object .. 32

TransferredOpenMediaEvent .. 34

TransferParty Object ... 34

DisconnectedEvent ... 36

DisconnectedParty Object ... 36

6. Error Code .. 37

7. Appendix .. 37

JavaScript and NodeJS code example ... 37

3

1. About the OpenMedia Framework

The OpenMedia Framework allows the creation of Connectors, which perform the integration of

Corporate Systems and Social Media to the OpenScape Contact Center.

The framework consists of a REST interface, which allows receiving contacts in the OpenScape Contact

Center, which will then route the contact to the most appropriate agent.

The framework consists of commands sent from the Corporate System or Social Medium to the

OpenScape Contact Center and the other way round.

OpenMedia Framework solution overview

The figure below shows a high level overview of the OpenMedia solution.

Simple OpenMedia flow example

Below we can see a simple sequence flow that demonstrates how the entire system will integrate with

each system processes.

Simple New Contact request from the Connector to OSCC system.

4

5

Simple OpenMedia External Media flow example

When a new contact is received from a Connector via the OpenMedia interface, with the type

ExternalMedia, the contact shall be handled by the OSCC. When the agent is selected, the Agent Portal

will get the Contact Details. The external application which is negotiating the payload needs to get status

messages from OSCC informing that the agent is selected, the agent started being alerted, the agent has

answered to the contact, the agent has finished the contact. If Listen for Events is enabled, the events will

be generated for any type of OpenMedia incoming contact.

6

2. OpenMedia Framework prerequisites

For OpenMedia to work there are some steps that must be performed before using the API.

• Knowledge on REST (Representational state transfer) web services.

• Licenses for OpenMedia connector stored on the server.

• Enable the OpenMedia feature from the Manager Application.

• Create a new connector using the Manager Application and generate the connector token.

• Install the OpenScape Contact Center Application Server (it can be collocated into OSCC

server or into another machine).

• Logon an Agent to the connector by using Agent Portal to be able to handle the contacts.

Note: For more details about the configuration, see OpenScape Contact Center Manager and

Administration Guide.

Note: For more details about installation, see OpenScape Contact Center Installation Guide.

7

3. OpenMedia commands

OpenMedia commands are requests sent from the Connector to the OpenScape Contact Center. The

requests are listed below:

Command Name HTTP
Command

Type

 REST URL and
Description

Connector
Registration

POST https://oscchostaddress/openmedia/webapi/main/registerConnector

Command used to send the request to register the connector on
OpenScape Contact Center.

New Contact POST https://oscchostaddress/openmedia/webapi/main/newContact

Command used to create new contacts to OpenScape Contact Center.

Keep Alive POST https://oscchostaddress/openmedia/webapi/main/keepalive

Command used to keep the session between the Connector and the
OpenScape Contact Center alive.

Connector Registration

Object used to register the Connector to OpenMedia Server.

The Connector Registration process will enable the connectivity to OpenMedia service. Also will return

the authorization session token to be used on the other REST requests to OSCC.

Connector Registration Request Object

Attribute name Attribute type Description

type String Indicates the type of the request. The string value supported by the
OpenScape Contact Center is: “Registration”.

webhookURL String The webhookURL is used to send requests from the OpenScape
Contact Center to the Connector.

openMedia Object OpenMedia object is contains the credentials which are configured in
the OpenScape Contact Center.
Note: The configuration must be aligned on what is configured on the
OpenScape Contact Center server. See the configuration on
Manager application.
See the openMedia object definition below.

OpenMedia Object

Attribute name Attribute type Description

openMediaTitle String Consists of the name of the connector and must match the name
configured in Manager.
Note: Containing up to 50 characters.

token String Generated at the Manager and must be copied to this attribute.
Note: Containing up to 50 characters.

Connector Registration Request JSON body example:

This is a full example of the connectorRegistration object that can be sent to OpenScape Contact Center.

{
 "type": "Registration",

8

 "webhookURL": "https://connectorhostaddress/connectorpath",
 "openMedia": {
 "openMediaTitle": "facebook",
 "token": "HWJVUAzTlBGx3vBmnwUVUMAMZHkGWX"

 }
}

Connector Registration Response

The response after the registration request. The response is a JSON object returned synchronously by

OSCC with the following data:

Connector Registration Response Object

Attribute name Attribute type Description

type String Indicates the type of the response. The string value returned by the
OpenScape Contact Center is: “Registration”.

errorCode Integer Indicates the returned error code number.
See error code enum definition below.

errorText String Indicates the returned error code text.
See error code enum definition below.

sessionToken String Session token for a registration request. The connector must use
this session token for other commands.
Important: all the commands sent to OpenScape Contact Center
must have this session token on the HTTP header as Authorization.
The HTTP Header must have for example:
Content-Type = application/json
Authorization = “session token returned by OpenScape Contact
Center”

userCredentials Object Contains the credentials which allow the Connector to authenticate
against the Corporate System / Social Media.
See the userCredentials object definition below.

UserCredentials Object

Attribute name Attribute type Description

userName String User name part of the credentials.

password String Password part of the credentials.

Connector Registration Response JSON body example:
{
 "type": "Registration",
 "errorCode": 0,
 "errorText": "NO_ERROR",
 "sessionToken":
"a5e272bcfa964c6dea958b583da4e721703bb2a74bff8533a5818ccaedd71669",
 "userCredentials": {
 "userName": "user name for social media",
 "password": "string"
 }
}

9

New Contact

Object used to create a new contact to OpenScape Contact Center.

Important: For New Contact requests, the HTTP must have the following headers:

• Content-Type = application/json

• Authorization = “session token returned by OSCC”

New Contact Object

Attribute name Attribute type Description

type String Indicates the type of publication. The string values supported by the
OpenScape Contact Center are: “Post”, “DirectMessage”,
“Article”, “Ticket”, “ExternalMedia”.

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime string
before sending to OpenScape Contact Center. This field is shown
at the Agent Portal. JavaScript example: Date().toUTCString();

source Object Contains the information about the person or organization that
posted the message to the corporate system or the social media.
See the source object definition below.

publishedObject Object Contains all the information about the content posted to the
corporate system or to the social media.
See the publishedObject definition below.

destination Object Defines the place on which the message was published. One
example is a page on which the source has published the message.
See the destination object definition below.

isRealTimeHandling Boolean This flag defines if the message has a real-time contact
characteristic or not.
Note: This flag changes the way on how the Agent user will handle
the contact. If the value is true, the handling will be like a chat
contact, that means it will be a continuous conversation session
and the contact will remain active until one of the sides decides to
finish it, if the value is false, the contact will be finished when the
Agent replies to the message.

Source Object

Attribute name Attribute type Description

id String Identifies of the source (From) of the contact.
Note: This field can be used for routing at the Manager, through
Design Center in Source/Destination component. Also is used to
match the source for the 360º identification of the customer.
Containing up to 256 characters.

type String Defines if the source is a Person or Organization. The string values
supported by the OpenScape Contact Center are “Person”,
“Organization”.

name String Defines the name of the source that means the name of the person
or organization.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

10

location String (Optional). Contains information about the location of the source who
sent the message.
Note: Containing up to 256 characters.

language String (Optional). Contains the language used by the source. Example:
“en”.
Note: Containing up to 256 characters.

additionalInfos Array of
Objects

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.
Note: the key/values are not used by OpenScape Contact Center,
but will be returned to the connector when a reply is created for the
message. The connector can use the values for its own purposes.
The objects in the list must have the attributes “key” and “value”.
See the additionalInfos object definition below.

PublishedObject Object

Attribute name Attribute type Description

id String Contains the published message on the corporate system or social
media.
Note: Containing up to 256 characters.

fatherId String Identifies the parent of the post or comment on the media. Example:
On Facebook, one post in the timeline can have comments. The
father ID is the Original post identification and the “id” is the comment
identification.
Note: This object is very important for the stream and the realtime
contact handling. Containing up to 256 characters.

inReplyTo Object Contains the identification value if it is a reply to another post or
comment.
See the inReplyTo object definition below.

title String Contains the title of the comment/post. This data is shown on the
Contact Detail view for the Agent.
Note: Containing up to 256 characters.

content String Contains the text content of the post/comment sent by the source.
Note: Containing up to 5000 characters.

contactData Array of
Objects

List of contactData key/value pairs which may carry customized data
about the contact.
Note: This list can be used by OpenScape Contact Center to define
routing strategies according to the input key/values. This field is also
shown at the Agent Portal.
See the contactData object definition below.

attachments Array of
Objects

List of attachment objects that contain information about files
attached to the message on the corporate system/social media.
Note: The Agent Portal will show only if there’s any attachment.
See the attachments object definition below.

tagList Array of
Objects

List of tag objects that contain tag data depending on the social
media. Tags are keywords used by social media to classify a post or
mark some subject.
See the tag object definition below.

Destination Object

Attribute name Attribute type Description

id String Identifies the destination (To) of the contact.
Note: This field can be used for routing at the Manager, through
Design Center in Source/Destination component. Containing up to

11

256 characters.

type String Defines if the destination is a User or Page. The string values
supported by the OpenScape Contact Center are “User”, “Page”.

name String Define the name of the destination. The name of the user or page.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

URL String (Optional). Contain information about the URL of the destination
where the message were sent.

additionalInfos Array of
Objects

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.
Note: the key/values are not used by OpenScape Contact Center,
but will be returned to the connector when a reply is created for the
message. The connector can use the values for its own purposes.
The objects in the list must have the attributes “key” and “value”.
See the additionalInfos object definition below.

AdditionalInfos Object

Attribute name Attribute type Description

key String Key for connector purposes.

value String Value for connector purposes.

InReplyTo Object

Attribute name Attribute type Description

id String Identification of the reply from a comment.
Note: Containing up to 256 characters.

ContactData Object

Attribute name Attribute type Description

key String Key for the contact data.

value String Value for the contact data.

Attachment Object

Attribute name Attribute type Description

type String Indicates the media type of the file. The string values supported by
the OpenScape Contact Center are: “Image”, “Video”, “Audio”,
“Document”.

content String (Optional) Description of the attachment.

url String URL of the file. Example: http://www.example.com/cat.jpeg
Note: The URL will be used by the OpenScape Contact Center to
download the file during a contact handling.

Tag Object

Attribute name Attribute type Description

tag String Example: “#hashtag”.

New Contact JSON body Example:

Here there is a full example of the NewContact object to send to OpenScape Contact Center.

http://www.example.com/cat.jpeg

12

{
 "type": "Post",
 "dateTime": "2016-09-10T15:04:55Z",
 "source": {
 "id": "source id",
 "type": "Person",
 "name": "name surname",
 "location": "Town, Country",
 "language": "en",
 "additionalInfo": [
 {
 "key": "info1",
 "value": "value1"
 },
 {
 "key": "info2",
 "value": "value2"
 }
]
 },
 "publishedObject" : {
 "id": "Object id",
 "fatherId": "Object id",
 "inReplyTo": {
 "id": "Id of post for which this object is a reply or a
comment."
 },
 "title": "Title of the document",
 "content": "This field contains the content of the post",
 "contactData": [
 {
 "key": "key1",
 "value": "value1"
 },
 {
 "key": "key2",
 "value": "value2"
 }
],
 "attachments": [
 {
 "type": "Image",
 "content": "Description of the attachment",
 "url": "http://www.example.com/cat.jpeg"
 }
],
 "tagList": [
 {
 "tag": "#hashtag"
 },
 {
 "tag": "@mention"
 }
]
 },
 "destination" : {
 "id": "Page id",
 "type": "Page",
 "name": "Page Name",
 "URL": "Page address",

13

 "additionalInfo": [
 {
 "key": "info1",
 "value": "value1"
 },
 {
 "key": "info2",
 "value": "value2"
 }
]
 },
 "isRealTimeHandling": false
}

New Contact Response

Response to newContact. The response is a JSON object returned synchronously by OpenScape

Contact Center with the following data:

New Contact Response Object

Attribute name Attribute type Description

type String Indicates the type of the response. The string values supported by
the OpenScape Contact Center are: “Post”, “DirectMessage”,
“Article”, “Ticket”, “ExternalMedia”.

errorCode Integer Indicates the returned error code number.
See error code enum definition below.

errorText String Indicates the returned error code text.
See error code enum definition below.

New Contact Response JSON body example:

{
 "type": "Post",
 "errorCode": 0,
 "errorText": "NO_ERROR"
}

Keep Alive

The HTTP REST command is used to keep the connection between the Connector and the OpenScape

Contact Center alive.

Important: In the Keep Alive request the HTTP request must be sent with the following headers:

• Content-Type = application/json

• Authorization = “session token returned by OSCC”

Note: send an empty JSON object.

Keep Alive JSON body example:
{}

14

Keep Alive Response

Response after every request. The response is a JSON object returned synchronously by OpenScape

Contact Center with the following data:

Keep Alive Response Object

Attribute name Attribute type Description

type String Indicates the type of the response. The string value supported by the
OpenScape Contact Center is: “keepAlive”.

errorCode Integer Indicates the returned error code number.
See error code enum definition below.

errorText String Indicates the returned error code text.
See error code enum definition below.

Keep Alive Response JSON body example:
{
 "type": "keepAlive",
 "errorCode": 0,
 "errorText": "NO_ERROR"
}

Listen For Events

If Listen for Events is enabled, the events will be generated for any type of OpenMedia incoming contact.

Listen For Events Request Object

Attribute name Attribute
type

Description

enabledListenForEvent Boolean Indicates the state function “ListenForEvent”

Listen For Events Object Request JSON body example:

This is a full example of the connectorRegistration object that can be sent to OpenScape Contact Center.

{

 "enabledListenForEvent": true

}

Listen For Events Response

Response after every request. The response is a JSON object returned synchronously by OpenScape

Contact Center with the following data

Listen For Events Response Object

Attribute name Attribute type Description

errorCode Integer Indicates the returned error code number.
See error code enum definition below.

15

errorText String Indicates the returned error code text.
See error code enum definition below.

Connector Registration Response JSON body example:
{
 "errorCode": 0,
 "errorText": "NO_ERROR"
}

16

4. OpenMedia Requests from OpenScape Contact
Center to Connector

Objects sent by OpenScape Contact Center to the Connector on the “Web Hook URL” sent by the

Connector during the registration.

Object Name REST URL example /
Description

Outgoing Publication webhookURL sent to OpenScape Contact Center during registration.

Defines a Reply or an Outgoing publication sent by the OpenScape
Contact Center to be posted on the external media by the Connector.

Stream Request webhookURL sent to OpenScape Contact Center during registration.

Request from OpenScape Contact Center to get the stream or the history
of the contact handled by an Agent.

Outgoing Publication

Object used to publish (from the OpenScape Contact Center) the object to the destination (Connector).

Outgoing Publication Object

Attribute name Attribute
type

Description

type String Indicates the type of publication. The string values supported by
the OpenScape Contact Center are: “Post”, “DirectMessage”,
“Article”, “Ticket”, “ExternalMedia”.
Note: the type is defined by the New Contact sent by the
connector.

source Object Contains the information about the person or organization that is
posting the message to the corporate system or social media.
See the source object definition below.

objectToBePublished Object Contains all the information about the content to be posted to the
social media or other media.
See the objectToBePublished object definition below.

destination Object Defines the place on which the message shall be published. One
example is a page on which the message shall be published.
See the destination object definition below.

Source Object

Attribute name Attribute type Description

id String Identifies of the source (From) of the contact.

type String Defines if the source is a Person or Organization. The string values
supported by the OpenScape Contact Center are “Person”,
“Organization”.

name String Defines the name of the source that means the name of the person
or organization.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

location String (Optional). Contains information about the location of the source who
sent the message.
Note: Containing up to 256 characters.

language String (Optional). Contains the language used by the source. Example:

17

“en”.
Note: Containing up to 256 characters.

additionalInfos Array of
Objects

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.
Note: the key/values are not used by OpenScape Contact Center,
but will be returned to the connector when a reply is created for the
message. The connector can use the values for its own purposes.
The objects in the list must have the attributes “key” and “value”.
See the additionalInfos object definition below.

ObjectToBePublished Object

Attribute name Attribute type Description

id String Identifies the post or comment on the media.

inReplyTo Object Contains the identification of the message for which this outgoing
message is a replay.
See the inReplyTo object definition below.

title String Contains the title of the post/message.

content String Contain the text content of the post/message sent by OpenScape
Contact Center.

attachments Array of
Objects

Contains information about files attached to the post/message.
See the attachments object definition below.

Destination Object

Attribute name Attribute type Description

id String Identifies the destination (To) of the contact.
Note: This field can be used for routing at the Manager, through
Design Center in Source/Destination component. Containing up to
256 characters.

type String Defines if the destination is a User or Page. The string values
supported by the OpenScape Contact Center are “User”, “Page”.

name String Define the name of the destination. The name of the user or page.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

URL String (Optional). Contain information about the URL of the destination
where the message were sent.

additionalInfos Array of
Objects

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.
Note: the key/values are not used by OpenScape Contact Center,
but will be returned to the connector when a reply is created for the
message. The connector can use the values for its own purposes.
The objects in the list must have the attributes “key” and “value”.
See the additionalInfos object definition below.

InReplyTo Object

Attribute name Attribute type Description

id String Identifies the reply from a comment.

Attachment Object

Attribute name Attribute type Description

type String Indicates the media type of the file. The string values supported by
the OpenScape Contact Center are: “Image”, “Video”, “Audio”,
“Document”.

content String (Optional) Contains the description of the attachment.

18

url String Note: attachment from OpenScape Contact Center not supported.

Outgoing Publication JSON body example:

Here there is a full example of the outgoingPublication object to send to the OpenScape Contact Center.

{
 "type": "Post",
 "dateTime": "2016-09-10T15:04:55Z",
 "source": {
 "id": "source id",
 "type": "Person",
 "name": "name surname",
 "location": "Town, Country",
 "language": "en",
 "additionalInfo": []
 },
 "objectToBePublished" : {
 "id": "Object id",
 "inReplyTo": {

 "id": "Id of post for which this object is a reply or a
comment."
 },
 "title": "Title of the document",
 "content": "This field contains the content of the publication",
 "attachments": []
 },
 "destination" : {
 "id": "Page id",
 "type": "Page",
 "name": "Page Name",
 "URL": "Page address",
 "additionalInfo": [
 {
 "key": "info1",
 "value": "value1"
 }
]
 }
}

Outgoing Publication Response

Response after Outgoing Publication is received by the connector. The response is a JSON object

returned synchronously by the Connector to the OpenScape Contact Center with the following data:

Outgoing Publication Response Object

Attribute name Attribute type Description

type String Indicates the type of the response. The string values supported by
the OpenScape Contact Center are: “Post”, “DirectMessage”,
“Article”, “Ticket”.

errorCode Integer Indicates the returned error code number.
See error code enum definition below.

errorText String Indicates the returned error code text.
See error code enum definition below.

19

Outgoing Publication Response JSON body example:

Here there is a full example of the Outgoing Publication Response object to be sent to the OpenScape

Contact Center.

{
 "type": "Post",
 "errorCode": 0,
 "errorText": "NO_ERROR"
}

Stream Request

The Stream Request is used to request from the corporate system or from the social media for the

messages which are part of the stream.

A useful use case for this request from OpenScape Contact Center is when an Agent receives a contact

and needs to know the context in which the message was posted. Then the agent is able to request the

stream of which the contact is part.

Basically OpenScape Contact Center will send a POST request with StreamRequest object and the

connector will process the request. If there are older messages the connector will send a POST back with

StreamResponse object fulfilled.

See the example sequence below:

20

Important: After receiving this request, the connector must handle it asynchronously. The Stream

Response object needs to be sent to URL:

https://oscchostaddress/openmedia/webapi/main/streamResponse

Stream Request Object

Attribute name Attribute type Description

type String Indicates the type of the request. The string value supported by the
OpenScape Contact Center is: “Stream”.

destinationId String Identifies the destination (To) of the contact.

id String Identifies the post or message on the corporate system or social
media.

numberOfMessages String Contains the number of messages the object shall retrieve.

Stream Request JSON body example:

Here there is a full example of the streamRequest object to send to OpenScape Contact Center.

{
 "type": "Stream",
 "destinationId": "Page id",
 "id": "205056409590639",
 "numberOfMessages": "10"
}

Stream Response

Object to be sent to OpenScape Contact Center with the stream response definition. The HTTP request

must be a POST to URL: https://oscchostaddress/openmedia/webapi/main/streamResponse

Response after stream request. The response is a JSON object with the following data:

Stream Response Object

Attribute name Attribute type Description

type String Indicates the type of the response. The string value supported by the
OpenScape Contact Center is: “Stream”.

errorCode Integer Indicates the returned error code number.
See error code enum definition below.

errorText String Indicates the returned error code text.
See error code enum definition below.

id String Identifies the source (From) of the contact.

page Integer Indicates how many pages the stream will retrieve.

lastPage String Indicates if the page requested is the last page.

itemsinpage Integer Indicates how many replies/comments are in the page.

totalItems Integer Contains the number of replies/comments that will be retrieved in
total.

orderedItems Array of
Objects

Contains all items retrieved.
See the orderedItem object definition below.

OrderedItem Object

Attribute name Attribute type Description

id String Identifies the post or comment on the media.

https://oscchostaddress/openmedia/webapi/main/streamResponse

21

fatherId String Identifies the parent of the post or comment on the media. Example:
On Facebook, one post in the timeline can have comments. The
father ID is the Original post identification and the “id” is the comment
identification.
Note: This object is very important for the stream and the realtime
contact handling.

inReplyTo Object Contains identification value if it is a reply to another post or
comment.
See the inReplyTo object definition below.

type String Indicates the type of the response. The string values supported by
the OpenScape Contact Center are: “Post”, “DirectMessage”.

dateTime String Indicates the date and time creation of the published post/message.
Note: Use UTC Date/Time format to create the dateTime string
before send to OpenScape Contact Center. JavaScript example:
Date().toUTCString();

source Object Contains the information about the person or organization that sends
the message to the media.
See the source object definition below.

content String Contains the text content of the post/comment sent by the source.

InReplyTo Object

Attribute name Attribute type Description

id String Identifies the reply from a comment.

Source Object

Attribute name Attribute type Description

type String Defines whether the source is a Person or Organization. The string
values supported by the OpenScape Contact Center are “Person”,
“Organization”.

name String Defines the name of the source. The name of the person or
organization.
Note: The name is shown at the Agent Portal.

AdditionalInfo Object

Attribute name Attribute type Description

key String Key for connector purposes.

value String Value for connector purposes.

Stream Response JSON body example:
{

 "type": "Stream",

 "errorCode": 0,

 "errorText": "NO_ERROR",

 "id": "205056409590639_124328589355467",

 "page": 1,

 "lastPage": "true",

22

 "itemsinpage": 3,

 "totalItems": 3,

 "orderedItems": [

 {

 "id": "205056409590639_537658564310000",

 "fatherId": "205056409590639_124328589355467",

 "inReplyTo": {

 "id": "205056409590639_124328589355467"

 },

 "type": "Post",

 "dateTime": "2016-09-10T13:15:00Z",

 "source": {

 "type": "Person",

 "name": "John Doe"

 },

 "content": "Please provide more detail about your problem."

 },

 {

 "id": "205056409590639_124328589310001",

 "fatherId": "205056409590639_124328589355467",

 "inReplyTo": {

 "id": "205056409590639_124328589355467"

 },

 "type": "Post",

 "dateTime": "2016-09-10T13:04:55Z",

 "source": {

 "type": "Person",

 "name": "Martin Smith"

 },

 "content": "This was the 1st comment to the complaint."

 },

 {

 "id": "205056409590639_740548589310002",

 "fatherId": "205056409590639_124328589355467",

23

"inReplyTo": {

 "id": "205056409590639_124328589355467"

 },

 "type": "Post",

 "dateTime": "2016-09-10T12:04:55Z",

 "source": {

 "type": "Person",

 "name": "Brian Jameson"

 },

 "content": "This is the original complaint."

 }

]

}

24

5. OpenMedia Events

Objects sent from OpenScape Contact Center to the Connector on the “Web Hook URL” sent by the

Connector after function listenForEvents is enable.

Object Name Description

DeliveredOpenMediaEvent The DeliveredEvent object is sent when a contact is delivered to a

monitored device in the system.

EstablishedEvent The EstablishedEvent object is sent whenever a contact that is in the

system is connected with a user.

HeldOpenMediaEvent The HeldEvent object is sent whenever a contact that is in the system is

placed on hold.

RetrievedOpenMediaEvent The RetrievedEvent object is sent whenever a contact that has been

placed on hold is retrieved from hold.

TransferredOpenMediaEvent The TransferredEvent is sent whenever a contact is transferred from one
device (for example, a user) to another device.

DisconnectedEvent The DisconnectedEvent object is sent whenever a party that is on a
contact in the system disconnects (hangs-up).

DivertedOpenMediaEvent

DeliveredOpenMediaEvent

DeliveredOpenMediaEvent Object

Attribute name Attribute
type

Description

type String Indicates the type of Event. To all Independent Media Events the
type is OpenMediaEvent

openMediaEventType String Indicate type of Event. DeliveredOpenMediaEvent

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime string
before sending to OpenScape Contact Center. This field is shown
at the Agent Portal. JavaScript example: Date().toUTCString();

contactID String Identify the contact who will be routed by OSCC. This is unique in
all events to same user.

agentID String Identify the agent who receive the request.

source Object Contains the information about the person or organization that is
posting the message to the corporate system or social media.
See the source object definition below.

publishedObject Object Contains all the information about the content to be posted to the
social media or other media.
See the objectToBePublished object definition below.

destination Object Defines the place on which the message shall be published. One
example is a page on which the message shall be published.
See the destination object definition below.

Source Object

Attribute name Attribute type Description

id String Identifies of the source (From) of the contact.

25

type String Defines if the source is a Person or Organization. The string values
supported by the OpenScape Contact Center are “Person”,
“Organization”.

name String Defines the name of the source that means the name of the person
or organization.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

location String (Optional). Contains information about the location of the source who
sent the message.
Note: Containing up to 256 characters.

language String (Optional). Contains the language used by the source. Example:
“en”.
Note: Containing up to 256 characters.

additionalInfos Array of
Strings

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.

PublishedObject Object

Attribute name Attribute type Description

id String Contains the published message on the corporate system or social
media.
Note: Containing up to 256 characters.

fatherId String Identifies the parent of the post or comment on the media. Example:
On Facebook, one post in the timeline can have comments. The
father ID is the Original post identification and the “id” is the comment
identification.
Note: This object is very important for the stream and the realtime
contact handling. Containing up to 256 characters.

inReplyTo Object Contains the identification value if it is a reply to another post or
comment.
See the inReplyTo object definition below.

title String Contains the title of the comment/post. This data is shown on the
Contact Detail view for the Agent.
Note: Containing up to 256 characters.

content String Contains the text content of the post/comment sent by the source.
Note: Containing up to 5000 characters.

contactData Array of
Objects

List of contactData key/value pairs which may carry customized data
about the contact.
Note: This list can be used by OpenScape Contact Center to define
routing strategies according to the input key/values. This field is also
shown at the Agent Portal.
See the contactData object definition below.

attachments Array of
Objects

List of attachment objects that contain information about files
attached to the message on the corporate system/social media.
Note: The Agent Portal will show only if there’s any attachment.
See the attachments object definition below.

tagList Array of
Objects

List of tag objects that contain tag data depending on the social
media. Tags are keywords used by social media to classify a post or
mark some subject.
See the tag object definition below.

26

Destination Object

Attribute name Attribute type Description

id String Identifies the destination (To) of the contact.
Note: This field can be used for routing at the Manager, through
Design Center in Source/Destination component. Containing up to
256 characters.

type String Defines if the destination is a User or Page. The string values
supported by the OpenScape Contact Center are “User”, “Page”.

name String Define the name of the destination. The name of the user or page.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

URL String (Optional). Contain information about the URL of the destination
where the message were sent.

additionalInfos Array of String (Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.

DeliveredOpenMediaEvent JSON body example:

{

 "type":"OpenMediaEvent",

 "openMediaEventType":"DeliveredOpenMediaEvent",

 "dateTime":"2018-02-20 15:08:40.994",

 "contactID":"O553A8C5A0300",

 "agentID":"100",

 "source":{

 "id":"703545976517482_703546043184142",

 "type":"Organization",

 "name":"John Smith",

 "location":"Brasilia, Brasil",

 "language":"pt",

 "additionalInfo":[

]

 },

 "publishedObject":{

 "id":"703545976517482_703546026517477",

 "fatherId":"205056409590639_124328589355467",

 "inReplyTo":null,

 "title":"Sales Testing",

27

 "content":"",

 "contactData":null,

 "attachments":null,

 "tagList":null

 },

 "destination":{

 "id":"Node",

 "type":null,

 "name":"",

 "url":"",

 "additionalInfo":[

]

 }

}

EstablishedEvent

EstablishedEvent Object

Attribute name Attribute
type

Description

type String Indicates the type of Event. To all Independent Media Events the
type is OpenMediaEvent

openMediaEventType String Indicate type of Event. EstablishedEvent

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime string
before sending to OpenScape Contact Center. This field is shown
at the Agent Portal. JavaScript example: Date().toUTCString();

contactID String

agentID String

EstablishedEvent JSON body example:

{

 "type":"OpenMediaEvent",

 "openMediaEventType":"EstablishedEvent",

 "dateTime":"2018-02-20 15:08:41.043",

 "contactID":"O553A8C5A0300",

 "agentID":"100"

}

28

HeldOpenMediaEvent

HeldOpenMediaEventObject

Attribute name Attribute
type

Description

type String Indicates the type of Event. To all Independent Media Events the
type is OpenMediaEvent

openMediaEventType String Indicate type of Event. HeldOpenMediaEvent

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime string
before sending to OpenScape Contact Center. This field is shown
at the Agent Portal. JavaScript example: Date().toUTCString();

contactID String

agentID String

source Object Contains the information about the person or organization that is
posting the message to the corporate system or social media.
See the source object definition below.

publishedObject Object Contains all the information about the content to be posted to the
social media or other media.
See the objectToBePublished object definition below.

destination Object Defines the place on which the message shall be published. One
example is a page on which the message shall be published.
See the destination object definition below.

heldReason String

Source Object

Attribute name Attribute type Description

id String Identifies of the source (From) of the contact.

type String Defines if the source is a Person or Organization. The string values
supported by the OpenScape Contact Center are “Person”,
“Organization”.

name String Defines the name of the source that means the name of the person
or organization.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

location String (Optional). Contains information about the location of the source who
sent the message.
Note: Containing up to 256 characters.

language String (Optional). Contains the language used by the source. Example:
“en”.
Note: Containing up to 256 characters.

additionalInfos Array of
Strings

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.

PublishedObject Object

Attribute name Attribute type Description

id String Contains the published message on the corporate system or social
media.
Note: Containing up to 256 characters.

fatherId String Identifies the parent of the post or comment on the media. Example:
On Facebook, one post in the timeline can have comments. The

29

father ID is the Original post identification and the “id” is the comment
identification.
Note: This object is very important for the stream and the realtime
contact handling. Containing up to 256 characters.

inReplyTo Object Contains the identification value if it is a reply to another post or
comment.
See the inReplyTo object definition below.

title String Contains the title of the comment/post. This data is shown on the
Contact Detail view for the Agent.
Note: Containing up to 256 characters.

content String Contains the text content of the post/comment sent by the source.
Note: Containing up to 5000 characters.

contactData Array of
Objects

List of contactData key/value pairs which may carry customized data
about the contact.
Note: This list can be used by OpenScape Contact Center to define
routing strategies according to the input key/values. This field is also
shown at the Agent Portal.
See the contactData object definition below.

attachments Array of
Objects

List of attachment objects that contain information about files
attached to the message on the corporate system/social media.
Note: The Agent Portal will show only if there’s any attachment.
See the attachments object definition below.

tagList Array of
Objects

List of tag objects that contain tag data depending on the social
media. Tags are keywords used by social media to classify a post or
mark some subject.
See the tag object definition below.

Destination Object

Attribute name Attribute type Description

id String Identifies the destination (To) of the contact.
Note: This field can be used for routing at the Manager, through
Design Center in Source/Destination component. Containing up to
256 characters.

type String Defines if the destination is a User or Page. The string values
supported by the OpenScape Contact Center are “User”, “Page”.

name String Define the name of the destination. The name of the user or page.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

URL String (Optional). Contain information about the URL of the destination
where the message were sent.

additionalInfos Array of String (Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.

HeldOpenMediaEvent JSON body example:

{

 "type":"OpenMediaEvent",

 "openMediaEventType":"HeldOpenMediaEvent",

30

 "dateTime":"2018-02-20 15:09:14.054",

 "contactID":"O553A8C5A0300",

 "agentID":"100",

 "source":{

 "id":"",

 "type":"",

 "name":"",

 "location":"",

 "language":"",

 "additionalInfo":[

]

 },

 "publishedObject":{

 "id":"",

 "fatherId":"",

 "inReplyTo":null,

 "title":"",

 "content":"",

 "contactData":null,

 "attachments":null,

 "tagList":null

 },

 "destination":{

 "id":"",

 "type":null,

 "name":"",

 "url":"",

 "additionalInfo":[

]

 },

 "heldReason":"0"

}

31

RetrievedOpenMediaEvent

HeldOpenMediaEventObject

Attribute name Attribute
type

Description

type String Indicates the type of Event. To all Independent Media Events the
type is OpenMediaEvent

openMediaEventType String Indicate type of Event. RetrievedOpenMediaEvent

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime string
before sending to OpenScape Contact Center. This field is shown
at the Agent Portal. JavaScript example: Date().toUTCString();

contactID String

agentID String

source Object Contains the information about the person or organization that is
posting the message to the corporate system or social media.
See the source object definition below.

publishedObject Object Contains all the information about the content to be posted to the
social media or other media.
See the objectToBePublished object definition below.

destination Object Defines the place on which the message shall be published. One
example is a page on which the message shall be published.
See the destination object definition below.

Source Object

Attribute name Attribute type Description

id String Identifies of the source (From) of the contact.

type String Defines if the source is a Person or Organization. The string values
supported by the OpenScape Contact Center are “Person”,
“Organization”.

name String Defines the name of the source that means the name of the person
or organization.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

location String (Optional). Contains information about the location of the source who
sent the message.
Note: Containing up to 256 characters.

language String (Optional). Contains the language used by the source. Example:
“en”.
Note: Containing up to 256 characters.

additionalInfos Array of
Strings

(Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.

PublishedObject Object

Attribute name Attribute type Description

id String Contains the published message on the corporate system or social
media.
Note: Containing up to 256 characters.

fatherId String Identifies the parent of the post or comment on the media. Example:
On Facebook, one post in the timeline can have comments. The
father ID is the Original post identification and the “id” is the comment

32

identification.
Note: This object is very important for the stream and the realtime
contact handling. Containing up to 256 characters.

inReplyTo Object Contains the identification value if it is a reply to another post or
comment.
See the inReplyTo object definition below.

title String Contains the title of the comment/post. This data is shown on the
Contact Detail view for the Agent.
Note: Containing up to 256 characters.

content String Contains the text content of the post/comment sent by the source.
Note: Containing up to 5000 characters.

contactData Array of
Objects

List of contactData key/value pairs which may carry customized data
about the contact.
Note: This list can be used by OpenScape Contact Center to define
routing strategies according to the input key/values. This field is also
shown at the Agent Portal.
See the contactData object definition below.

attachments Array of
Objects

List of attachment objects that contain information about files
attached to the message on the corporate system/social media.
Note: The Agent Portal will show only if there’s any attachment.
See the attachments object definition below.

tagList Array of
Objects

List of tag objects that contain tag data depending on the social
media. Tags are keywords used by social media to classify a post or
mark some subject.
See the tag object definition below.

Destination Object

Attribute name Attribute type Description

id String Identifies the destination (To) of the contact.
Note: This field can be used for routing at the Manager, through
Design Center in Source/Destination component. Containing up to
256 characters.

type String Defines if the destination is a User or Page. The string values
supported by the OpenScape Contact Center are “User”, “Page”.

name String Define the name of the destination. The name of the user or page.
Note: The name is shown at the Agent Portal. Containing up to 256
characters.

URL String (Optional). Contain information about the URL of the destination
where the message were sent.

additionalInfos Array of String (Optional) List of additionalInfos objects that contain a key/value
pair that can be used by the connector.

RetrievedOpenMediaEvent JSON body example:

{

 "type":"OpenMediaEvent",

 "openMediaEventType":"RetrievedOpenMediaEvent",

 "dateTime":"2018-02-20 15:09:19.867",

 "contactID":"O553A8C5A0300",

33

 "agentID":"100",

 "source":{

 "id":"703545976517482_703546043184142",

 "type":"Organization",

 "name":"John Smith",

 "location":"Brasilia, Brasil",

 "language":"pt",

 "additionalInfo":[

]

 },

 "publishedObject":{

 "id":"703545976517482_703546026517477",

 "fatherId":"205056409590639_124328589355467",

 "inReplyTo":null,

 "title":"Sales Testing",

 "content":"",

 "contactData":null,

 "attachments":null,

 "tagList":null

 },

 "destination":{

 "id":"Node",

 "type":null,

 "name":"",

 "url":"",

 "additionalInfo":[

]

 }

}

34

TransferredOpenMediaEvent

TransferredOpenMediaEventObject

Attribute name Attribute
type

Description

type String Indicates the type of Event. To all Independent Media Events the
type is OpenMediaEvent

openMediaEventType String Indicate type of Event. TransferredOpenMediaEvent

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime string
before sending to OpenScape Contact Center. This field is
shown at the Agent Portal. JavaScript example:
Date().toUTCString();

contactID String

agentID String

m_TransferReason String

m_TransferTargetType String

m_TransferringParty Object type of
TranferParty

m_TransferTargetParty Object type of
TranferParty

TransferParty Object

Attribute name Attribute
type

Description

type String

called String

lSiteKey String

deviceId String

agentId String

lAgentKey String

lTeamKey String

teamName String

state String

m_isCtiEventReceived Boolean

m_isCtiEventExpected Boolean

m_connectionState String

TransferredOpenMediaEvent JSON body example:

{

 "type":"OpenMediaEvent",

 "openMediaEventType":"TransferredOpenMediaEvent",

 "dateTime":"2018-02-20 15:09:23.470",

 "contactID":"O553A8C5A0300",

 "agentID":"100",

35

 "m_TransferReason":1,

 "m_TransferTargetType":1,

 "m_TransferringParty":{

 "type":0,

 "callId":"O553A8C5A0300O553A8C5A0300",

 "lSiteKey":354091819,

 "deviceId":"",

 "agentId":"100",

 "lAgentKey":7,

 "lTeamKey":0,

 "teamName":"",

 "state":2,

 "m_isCtiEventReceived":false,

 "m_isCtiEventExpected":false,

 "m_connectionState":7

 },

 "m_TransferTargetParty":{

 "type":0,

 "callId":"O553A8C5A0300O553A8C5A0300",

 "lSiteKey":354091819,

 "deviceId":"",

 "agentId":"100",

 "lAgentKey":7,

 "lTeamKey":0,

 "teamName":"",

 "state":2,

 "m_isCtiEventReceived":false,

 "m_isCtiEventExpected":false,

 "m_connectionState":7

 }

}

36

DisconnectedEvent

DisconnectedEventObject

Attribute name Attribute type Description

type String Indicates the type of Event. To all Independent Media Events
the type is OpenMediaEvent

openMediaEventType String Indicate type of Event. DisconnectedEvent

dateTime String Indicates the date and time of the creation of the published
post/message.
Note: Use UTC Date/Time format to create the dateTime
string before sending to OpenScape Contact Center. This field
is shown at the Agent Portal. JavaScript example:
Date().toUTCString();

contactID String The contactID property is an internal number used to uniquely
identify contacts.

agentID String Use the AgentID property to store the ID that the user will use
to log on.

discardReason String This DiscardReason property returns a Discard reason key as
defined in the database.

disconnectReason String The enDisconnectReasons enumeration represents the
reasons that a disconnect

disconnectedParty Object type of
DisconnectedParty

The DisconnectedParty property is the party that is
disconnecting from the contact.

DisconnectedParty Object

Attribute name Attribute type Description

agentKey String The AgentKey property is the key for the user in the database. This
key represents the user who is associated with this call

device String The device property specifies the device of a user

partyType String The PartyType property describes the type of party object you have.
This may also provide more information about the Device, depending
on what the party object represents

DisconnectedEvent JSON body example:

{

 "type":"OpenMediaEvent",

 "openMediaEventType":"DisconnectedEvent",

 "dateTime":"2018-02-20 15:09:37.253",

 "contactID":"O553A8C5A0300",

 "agentID":"100",

 "discardReason":"11",

 "disconnectReason":"DISCARDED",

 "disconnectedParty":{

 "agentKey":"7",

37

 "device":"",

 "partyType":"0"

 }

}

6. Error Code

All the error codes and error text are set as follow:

Error Codes

Number Text

0 NO_ERROR

1 GENERAL_ERROR

2 ALREADY_REGISTERED_ON

4 WRONG_TITLE_OR_TOKEN_NOT_FOUND

6 AUTH_STATEMENT_NOT_VALID

7 NOT_READY

8 NOT_ENABLED

9 CONNECTOR_BLOCKED

10 CONNECTOR_NOT_REGISTERED
11 WRONG_API_REQUEST
12 STRING_OUT_OF_BOUND
13 WRONG_DATE_FORMAT

7. Appendix

JavaScript and NodeJS code example

In this session we have an example of code written in JavaScript containing functions and objects that

can be used to integrate with the OpenScape Contact Center. If there is an intention to use any other

programming language, the objects below can guide you as an example.

How to:

Step 1) To execute the code it is mandatory to install the Node JS (https://nodejs.org/en/).

https://nodejs.org/en/

38

Step 2) Create a .js file at any folder and copy the code below.

Step 3) After the file has been created, change some attributes values to enable the example to work.
Attributes to be changed:

• myaddress: the ip address of the local machine

• myport: the port opened to receive events from OpenScape Contact Center

• omserveraddress: the ip address of the OpenScape Contact Center

• _omtoken: the token generated for the connector in Manager Application

• _omtitle: the title of the connector created in Manager Application

Step 4) Install the node module called express in the folder containing the .js file. Command: npm install
express

Step 5) Install the node module called body-parser in the folder containing the .js file. Command: npm
install body-parser

Step 6) Run the example using node in the folder containing the .js file. Command: node filename.js

Code example:

var express = require('express');

var bodyParser = require('body-parser');

var app = express();

var http = require('http');

var https = require('https');

var myaddress = '192.168.214.127';

var myport = '8080';

//Application Server specifics

var omserveraddress = '192.168.215.177';

var omserverport = '443';

// OpenMedia specifics

var _myconnhook = 'http://' + myaddress + ':8080/connectorhook';

var _omsession;

var _omtoken = "0xS9GJlLAUaNSRGeyNqPUXmBkGPAjo";

var _omtitle = "ConnectorTitle";

var _omusersettings = null;

var _omIsRegistered = false;

var _ompooling = null;

initialize();

39

// REST Interface Configuration

app.use(express.static('public'));

app.use(bodyParser.json());

app.post('/connectorhook', function (req, res) {

 console.log(req.body);

 var data = req.body;

 processReceivedDataFromOSCC(data);

 response = {

 code: "200",

 data: "OK"

 };

 res.send(JSON.stringify(response));

});

// Starts the Server to receive the requests/response from OpenMedia Web Service

var server = app.listen(myport, function () {

 var host = server.address().address;

 var port = server.address().port;

});

function initialize(){

 registerConnectorToOSCC();

}

//Register connector to OpenScape Contact Center

function registerConnectorToOSCC(){

 var data = {

 "type": "Registration",

 "webhookURL": _myconnhook,

 "openMedia" : {

40

 "openMediaTitle" : _omtitle,

 "token" : _omtoken

 }

 };

 var options = {

 host: omserveraddress,

 port: omserverport,

 path: '/openmedia/webapi/main/registerConnector',

 method: 'POST',

 headers: {

 "Content-Type": "application/json",

 },

 payload: JSON.stringify(data)

 };

 sendRequestToOSCC(options);

}

//Creating and sending a NewContact

function createAndSendNewContactToOSCC(){

 var date = new Date(); // Get the current Date and Time

 var dateTime = date.toUTCString();

 var inReplyTo = new InReplyTo("111111111");

 // Add some Contact Data. These values can be used by OSCC.

 var contactDatas = [];

 var contactData1 = new ContactData("KEY1", "VALUE1");

 var contactData2 = new ContactData("KEY2", "VALUE2");

 contactDatas.push(contactData1);

 contactDatas.push(contactData2);

 // Add some additional info that can be useful only for the Connector.

 var addtSourceInfos = [];

 var addInfo1 = new AdditionalInfo("KEY1", "VALUE1");

41

 var addInfo2 = new AdditionalInfo("KEY2", "VALUE2");

 addtSourceInfos.push(addInfo1);

 addtSourceInfos.push(addInfo2);

 // Create the Source object that represents the from person that is posting a
message.

 var source = new Source("abigail.flores@emailtest.com", "PERSON", "Abgail
Flores", "New York, NY", "en", addtSourceInfos);

 // Create the Destination of the contact. This defines where the source is
posting a new message.

 var addtDestInfos = [];

 var destination = new Destination("3333444555", "PAGE", "My Page", "",
addtDestInfos);

 // Array of tags

 var tags = [];

 //Array of Attachments

 var attachment = [];

 // Main object that represents the publication for OSCC. This object contains
the

 var publishedObject = new PublishedObject("22222222", "111111111", inReplyTo,
"Test message", "This is a test message content. DateTime = " + dateTime,
contactDatas, attachment, tags);

 var type = "POST"; // Defines the type of the new contact.

 var newContact = new NewContact(type, dateTime, source, publishedObject,
destination, "true");

 sendNewContactDataToOSCC(JSON.stringify(newContact));

}

//Sending the information of the new contact data to the OpenScape Contact Center

function sendNewContactDataToOSCC(data) {

 var options = {

 host: omserveraddress,

 port: omserverport,

 path: '/openmedia/webapi/main/newContact',

42

 method: 'POST',

 headers: {

 "Content-Type": "application/json",

 "Authorization": _omsession

 },

 payload: data

 };

 console.log('New contact created.');

 sendRequestToOSCC(options);

}

//Send the request to the OpenScape Contact Center

function sendRequestToOSCC(options) {

 var req;

 console.log('options.host: ' + options.host);

 console.log('options.port: ' + options.port);

 console.log('options.payload: ' + options.payload);

 process.env.NODE_TLS_REJECT_UNAUTHORIZED = "0";

 req = https.request(options, function (res) {

 res.setEncoding('utf8');

 res.on('data', function (chunk) {

 console.log('BODY: ' + chunk);

 processOSCCReturn(chunk);

 });

 });

 req.write(options.payload);

 req.on('response', function (e) {

 console.log('Response: ' + e.message);

 req.end();

 });

 req.on('error', function (e) {

 console.log('problem with request: ' + e.message);

43

 req.end();

 });

}

//OpenScape Contact Center return

function processOSCCReturn(data) {

 var obj = JSON.parse(data);

 if (obj.errorCode === 0) {

 if(obj.type === "Registration") {

 _omsession = obj.sessionToken;

 _omusersettings = obj.userCredentials;

 _omIsRegistered = true;

 openMediaServerPooling();

 }

 }

}

//Received Data from OpenScape Contact Center

function processReceivedDataFromOSCC(data) {

 var obj = data;

 console.log('processReceivedDataFromOSCC: ' + JSON.stringify(data));

 if (obj.type === "POST"){

 console.log(obj.objectToBePublished.inReplyTo.id);

 console.log(obj.objectToBePublished.content);

 }

 else if (obj.type == "Stream") {

 var inReplyTo = new InReplyTo("444444444");

 var sourcePerson = new SourceInfo("Person", "John Doe");

 var sourceOrganization = new SourceInfo("Organization", "Organization Name");

 var item1 = new OrderedItem("5555555", "1111_555555", inReplyTo, 'Post', '2016-
09-10T13:15:00Z', sourceOrganization, 'Please provide more detail about your
problem.');

 var item2 = new OrderedItem("6666666", "1111_555555", inReplyTo, 'Post', '2016-
09-10T13:04:55Z', sourcePerson, 'This was the 1st comment to the complaint.');

44

 var item3 = new OrderedItem("7777777", "1111_555555", inReplyTo, 'Post', '2016-
09-10T12:04:55Z', sourcePerson, 'This is the original complaint.');

 var items = [];

 items.push(item1);

 items.push(item2);

 items.push(item3);

 var fakeStreamResponse = new StreamResponse("Stream", 0, 'NO_ERROR',
"111111111", 1, 'true', "3", "3", items);

 sendStreamResponseToOSCC(fakeStreamResponse);

 }

}

function sendStreamResponseToOSCC(fakeStreamResponse) {

 var options = {

 host: omserveraddress,

 port: omserverport,

 path: '/openmedia/webapi/main/streamResponse',

 method: 'POST',

 headers: {

 "Content-Type": "application/json",

 "Authorization": _omsession

 },

 payload: JSON.stringify(fakeStreamResponse)

 };

 sendRequestToOSCC(options);

}

function openMediaServerPooling(){

 if (_omIsRegistered) {

 var data = {};

 var options = {

45

 host: omserveraddress,

 port: omserverport,

 path: '/openmedia/webapi/main/keepalive',

 method: 'POST',

 headers: {

 "Content-Type": "application/json",

 "Authorization": _omsession

 },

 payload: JSON.stringify(data)

 };

 process.env.NODE_TLS_REJECT_UNAUTHORIZED = "0";

 var req = https.request(options, function (res) {

 res.setEncoding('utf8');

 res.on('data', function (chunk) {

 console.log('KeepAlive response: ' + chunk);

 processOSCCReturn(chunk);

 });

 });

 req.end();

 req.on('error', function (e) {

 console.log('problem with request: ' + e.message);

 });

 createAndSendNewContactToOSCC();

 // Restart pooling

 pollOMWSServer();

 }

}

function pollOMWSServer() {

 setTimeout(function() {

 openMediaServerPooling();

 }, 60000);

}

//Objects model

function AdditionalInfo(key, value) {

46

 this.key = key;

 this.value = value;

}

function Source(id, type, name, location, language, additionalInfos) {

 this.id = id;

 this.type = type;

 this.name = name;

 this.location = location;

 this.language = language;

 this.additionalInfos = additionalInfos;

}

function InReplyTo(id) {

 this.id = id;

}

function ContactData(key, value) {

 this.key = key;

 this.value = value;

}

function Attachment(type, content, url) {

 this.type = type;

 this.content = content;

 this.url = url;

}

function Tag(tag) {

 this.tag = tag;

}

function PublishedObject(id, fatherId, inReplyTo, title, content, contactData,
attachments, tagList) {

 this.id = id;

 this.fatherId = fatherId;

 this.inReplyTo = inReplyTo;

47

 this.title = title;

 this.content = content;

 this.contactData = contactData;

 this.attachments = attachments;

 this.tagList = tagList;

}

function Destination(id, type, name, URL, additionalInfos) {

 this.id = id;

 this.type = type;

 this.name = name;

 this.URL = URL;

 this.additionalInfos = additionalInfos;

}

function NewContact(type, dateTime, source, publishedObject, destination,
isRealTimeHandling) {

 this.type = type;

 this.dateTime = dateTime;

 this.source = source;

 this.publishedObject = publishedObject;

 this.destination = destination;

 this.isRealTimeHandling = isRealTimeHandling;

}

function OrderedItem(id, fatherId, inReplyTo, type, dateTime, source, content) {

 this.id = id;

 this.fatherId = fatherId;

 this.inReplyTo = inReplyTo;

 this.type = type;

 this.dateTime = dateTime;

 this.source = source;

 this.content = content;

}

function StreamResponse(type, errorCode, errorText, id, page, lastPage, itemsinpage,
totalItems, orderedItems) {

48

 this.type = type;

 this.errorCode = errorCode;

 this.errorText = errorText;

 this.id = id;

 this.page = page;

 this.lastPage = lastPage;

 this.itemsinpage = itemsinpage;

 this.totalItems = totalItems;

 this.orderedItems = orderedItems;

}

function SourceInfo(type, name) {

 this.type = type;

 this.name = name;

}

mitel.com

© 2024 Mitel Networks Corporation. All Rights Reserved. Mitel and the Mitel logo are trademark(s) of Mitel Networks Corporation. Unify and associated
marks are trademarks of Unify Software and Solutions GmbH & Co. KG. All other trademarks herein are the property of their respective owners.

