
Unify OpenScape 4000/HiPath
4000
Debug

Debug

Service Documentation

06/2018

A31003-H3100-S106-06-7620

Notices

The information contained in this document is believed to be accurate in all respects but is not warranted by Mitel

Europe Limited. The information is subject to change without notice and should not be construed in any way as a

commitment by Mitel or any of its affiliates or subsidiaries. Mitel and its affiliates and subsidiaries assume no

responsibility for any errors or omissions in this document. Revisions of this document or new editions of it may be

issued to incorporate such changes. No part of this document can be reproduced or transmitted in any form or by

any means - electronic or mechanical - for any purpose without written permission from Mitel Networks Corporation.

Trademarks

The trademarks, service marks, logos, and graphics (collectively “Trademarks”) appearing on Mitel’s Internet sites

or in its publications are registered and unregistered trademarks of Mitel Networks Corporation (MNC) or its

subsidiaries (collectively “Mitel), Unify Software and Solutions GmbH & Co. KG or its affiliates (collectively “Unify”)

or others. Use of the Trademarks is prohibited without the express consent from Mitel and/or Unify. Please contact

our legal department at iplegal@mitel.com for additional information. For a list of the worldwide Mitel and Unify

registered trademarks, please refer to the website: http://www.mitel.com/trademarks.

© Copyright 2024, Mitel Networks Corporation

All rights reserved

mailto:iplegal@mitel.com
http://www.mitel.com/trademarks
http://www.mitel.com/trademarks

Contents
Contents

1 General Information on DEBUG . 5

2 User Interface . 7
2.1 Calling the Program . 7

2.1.1 The AMO DEBUG (AMO) . 8
2.1.2 The Miniterminal Handler (MTH) . 8

2.2 DEBUG Commands - Overview . 8
2.3 Entering DEBUG Commands . 11
2.4 Special Characters Used in the Commands . 11
2.5 DEBUG Dialog States . 12
2.6 Prompting. 13
2.7 Input via AMO DEBUG . 15
2.8 Input via Miniterminal Handler (MTH) . 17
2.9 Sporadic Messages . 17
2.10 Characteristics of Monoprocessor Systems (Hicom 3x3) . 18

3 Function Description of DEBUG Special Commands . 19
3.1 START Command (Start of a DEBUG Session) . 19
3.2 SAVEON Command (Activating the Patch Function) . 19
3.3 SAVEOFF Command (Deactivating the Patch Function) . 20
3.4 TERM Command (Terminating a DEBUG Session) . 20
3.5 RESET Command (Resetting the Trace Buffer) . 20
3.6 IN Command (Entering Instructions Interactively) . 21
3.7 RUN Command (Entering Instructions from the File (Runfile)) . 21
3.8 FILE Command (Controlling the Trace Buffer Logging Operation) . 22
3.9 PRINT Command (Printing the Trace Buffer and the Log File) . 22
3.10 TRIGGON Command (Activate Trigger Mode) . 24
3.11 TRIGGOFF Command (Deactivate Trigger Mode) . 25
3.12 SEL Command (Set Trigger Mode Selection) . 25
3.13 LIST Command (Output of Lists) . 25
3.14 DEF Command (Define Symbols) . 27
3.15 REDEF Command (Redefine Symbol) . 29
3.16 DCL Command (Define DEBUG Variable) . 30
3.17 REDCL Command (Redefine DEBUG Variable) . 30
3.18 AT Command (Define Test Order) . 31
3.19 REMAT Command (Delete Test Order) . 31
3.20 MDEF Command (Define Macro) . 32
3.21 MCALL Command (Call Macro Operation) . 32
3.22 REMMAC Command (Delete Macro) . 33
3.23 RUNON Command (Runfile Online: Activate Logging) . 33
3.24 RUNOFF Command (Runfile Online: Deactivate Logging) . 33
3.25 EXEC Command (Start Exit Routine) . 33
3.26 STOP Command (Stop Task) . 34
3.27 CONT Command (Continue Task) . 34
3.28 BREAK Command (Stop Processor) . 34
3.29 GO Command (Continue Processor) . 34
3.30 GOFOR Command (Deactivate Break Mode) . 35
3.31 GOTIL Command (Define Breakpoints) . 35
3.32 REMOVE Command (Delete Breakpoint) . 36
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 3

Contents
3.33 DOWHILE Command (Define Loop) . 36
3.34 ACT Command (Activate Test Order) . 37
3.35 DEACT Command (Deactivate Test Order) . 37
3.36 LOGON Command (Activate Trigger Entry) . 37
3.37 LOGOFF Command (Deactivate Trigger Entry) . 38
3.38 D Command (Display Memory Contents) . 38
3.39 TRACE Command (Trace Memory Contents) . 39
3.40 SET Command (Modify Memory Contents) . 40
3.41 VIEW Command (Output of Object Information) . 41
3.42 INSP Command (Output of JOB and TASK Information) . 41
3.43 IF Command (Define Conditions) . 42
3.44 ! Command (Execute Instructions) . 43
3.45 WRITE Command (Write Comments) . 43
3.46 END Command (Terminate Interactive Level) . 44

4 Adressing . 45
4.1 Numerical Addressing Carried out with the Aid of DEF Symbols . 45
4.2 Addressing CHILL Variables . 45

4.2.1 Basic Data Types. 45
4.2.2 Combinations . 46

5 Special Applications . 49
5.1 Testing with Dynamic Variables . 49
5.2 Testing with Processor Stop . 49
5.3 Global example . 49

6 Messages . 53
6.1 DEBUG Message Classes . 53
6.2 DEBUG Message Format . 54
6.3 Fixed Message Component Format . 54

7 Syntax Error . 57
7.1 Syntax Error Handling with Special Commands . 57
7.2 Syntax Error Handling for Normal Commands . 57
7.3 Syntax Error Handling in Runfiles . 58

8 Syntax in BNF. 59

9 User Information . 67
9.1 General . 67
9.2 Generation Limit Values . 67

10 List of DEBUG Messages . 69

List of Figures . 89

List of Tables . 91

Index . 93
 A31003-H3100-S106-06-7620, 06/2018
4 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug1.fm

General Information on DEBUG
1 General Information on DEBUG

The Debugger is a software tool available for the operating system via the AMO
DEBUG. With the Debugger, instructions and commands can be entered that
allow the system specialist to execute targeted diagnostic activities.

The Debugger allows both reading and writing, as well as setting TRACE markers
in memory (data basis). 
With the help of DEBUG run files, it is possible to automatically execute certain
DEBUG commands at defined points.

The Trace AMOs are a subfunction of the Debugger (AMO TRACA and TRACS).
Messages between the system’s software complexes can be read into Trace
memory using precise, bit-by-bit filter properties. Later, errors can be isolated with
the documented message interchange.

Further possibilities for Trace are offered by the AMOs

• PETRA (peripheral tracer)

• DISPA and DISPS (memory readout).

IMPORTANT: The DEBUG, TRACA, TRACS, DISPA, DISPS and PETRA appli-
cations assume knowledge of the system software and CHILL source code. 
Faulty operation can lead to system failure and destruction of the system program
in the database, as well as possible destruction of the hard disk.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 5

General Information on DEBUG

debug1.fm
 A31003-H3100-S106-06-7620, 06/2018
6 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug2.fm

User Interface

Calling the Program
2 User Interface

2.1 Calling the Program

Prior to calling the program, an ’intermediary’ must be activated; it takes care of
the transfer of input and output data from the input devices to DEBUG (and vice
versa).
Two ’intermediaries’ can be chosen from:

• the AMO DEBUG (AMO) (see Section 2.7, “Input via AMO DEBUG”)

and

• the Miniterminal Handler (MTH) (see Section 2.8, “Input via Miniterminal
Handler (MTH)”).

The MTH serves the devices connected to the DP, whereas AMO DEBUG
accesses the devices installed at the LCU. This chapter contains no details as to
which terminal devices may be connected. The entries described herein relate to
primitive terminals that forward inputs and outputs in transparent mode. 
The advantages afforded by intelligent terminals (PC, APOLLO) cannot be dealt
with in detail (see for example DASIST product on APOLLO).

These are, for example:

• Menu-driven input,

• Batch processing,

• CHILL symbols,

• Disassembler,

• Retranslation, etc.

Once the ’intermediary’ has been activated, a dialog session can be started with
DEBUG. The dialog interface is implemented in such a way that DEBUG can be
operated simultaneously via MTH and AMO. As DEBUG and MTH are present in
any processor, the MTH interface can connect a separate device in every
processor. This enables tests to be performed simultaneously in several
processors. The AMO interface (LCU) permits only one processor to be accessed
at a time. However, a switchover to another processor can be initiated at any time.
When the dialog with DEBUG is to be terminated, the ’intermediary’ can be
deactivated with the ’DEND’ command. If several LCUs are available, the dialog
with DEBUG can be carried on ’simultaneously’ in several processors during the
various MMI sessions. 
Termination of the intermediary does not affect the state of DEBUG.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 7

User Interface

debug2.fm

DEBUG Commands - Overview
2.1.1 The AMO DEBUG (AMO)

The AMO interface is activated with:

EXEC-DEBUG;

2.1.2 The Miniterminal Handler (MTH)

The MTH is activated by entering ’CTRL D’. 
All entries must be made in capital letters.

2.2 DEBUG Commands - Overview

Command Meaning Type

ACT Activate test job in / op

AT Define test job in

BREAK Stop processor in / op

CONT Continue task in

D Display (identical with TRACE) in / op

DCL Define DEBUG variable in

DEACT Deactivate test job in / op

DEF Define symbols in

DEND Terminate dialog spec

DOWHILE Define loop condition in / op

END Terminate input of statements in

EXEC Call exit routine in / op

FILE Allocate log file spec

GO Continue processor in

GOFOR Terminate break mode in

GOTIL Set breakpoints in

IF Define conditions in / op

IN Enter statements in dialog mode spec

INSP Output system object data in / op

LIST List user information spec

LOGOFF Deactivate trigger entry in / op

LOGON Activate trigger entry in / op

MCALL Call macro in / op

Table 1 DEBUG Commands (in Alphabetical Order)
 A31003-H3100-S106-06-7620, 06/2018
8 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug2.fm

User Interface

DEBUG Commands - Overview
There are different command levels:

• control level,

• interactive level and

• trigger point level.

The commands are categorized in accordance with these levels.

MDEF Define macro in

PRINT Print information spec

REDCL Redefine DEBUG variable in

REDEF Redefine DEF symbol in

REMAT Delete trigger point in

REMMAC Delete macro in

REMOVE Delete breakpoint in

RESET Reset trace buffer spec

RUN Read in statements from file spec

RUNOFF Stop logging of entries in

RUNON Log entries in runfile in

SAVEOFF Deactivate patch function spec

SAVEON Activate patch function spec

SEL Set trigger mode selection spec

SET Modify memory contents in / op

START Start DEBUG session spec

STOP Stop task op

TERM Terminate DEBUG session spec

TRACE Trace memory contents (display) in / op

TRIGGOFF Deactivate trigger mode spec

TRIGGON Activate trigger mode spec

VIEW List system objects in / op

WRITE Write comments in / op

! Execute instructions in

; Dummy statements in / op

Type: in Instruction

op Operation

spec Special command

Command Meaning Type

Table 1 DEBUG Commands (in Alphabetical Order)
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 9

User Interface

debug2.fm

DEBUG Commands - Overview
DEBUG Commands

Control Commands
SPECIAL COMMANDS

Statements
STATEMENTS

Operation
OPERATIONS

Instructions
INSTRUCTIONS

Control level Trigger point level Interactive level

Figure 1 DEBUG Commands overview

DEBUG, commands:- special commands

The special commands serve to perform functions which are not directly used for
collecting information. These commands are used in particular for allocating log
files, printing out information and for starting and terminating a DEBUG session.

DEBUG Statements

DEBUG commands are used for collecting information. Written in a language that
resembles CHILL, they are instrumental in informing DEBUG as to which
diagnostic operations are to be performed. DEBUG instructions may be
contained in runfiles. Runfiles are not permitted to contain special commands. 
DEBUG commands are subdivided into instructions and operations depending on
whether the statement is carried out in interactive mode or at the trigger point. In
addition to the functions that can be performed only at the trigger point or only in
interactive mode, there are functions that can be performed in both states. There
is, for instance, a SET operation and a SET instruction. There is no difference in
the syntax of operations and instructions.
 A31003-H3100-S106-06-7620, 06/2018
10 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug2.fm

User Interface

Entering DEBUG Commands
Operations

Operations are DEBUG commands that are carried out at the trigger point.
Operations refer to memory states prevailing at the time when the trigger is
reached.

Instructions

Instructions are DEBUG commands that are executed interactively. They refer to
memory contents existing at the input time (or more precisely at the time they are
executed).

2.3 Entering DEBUG Commands

Entries are checked by DEBUG (see handling of syntax errors). Special
commands cannot be continued over several lines; they are limited to 160
characters. If the special commands are entered at the interactive level, they are
limited to 80 characters. 
A DEBUG statement can be split into several entries. On the other hand, several
DEBUG statements can be transmitted with a single entry; the length of an entry
being limited to 80 characters. Comments in special commands and statements
are permitted wherever a BLANK (’ ’) is permitted. They are enclosed in the
delimiters /*... . length (even extending over several entries). 
The syntax of the individual commands is described in the sections ’Description
of DEBUG commands’ and ’Syntax in BNF’.

2.4 Special Characters Used in the Commands

Command Longname

DO ... OD Enclose operations at AT

FI Terminate IF construction

MEND Terminate macro operation at MDEF

OD Terminate operations in DOWHILE

THEN,ELSE IF construction branches

Table 2 Auxiliary Keywords (in Alphabetical Order)

% Identifiers for DEBUG variable and DEBUG mode

for D R or
Identification of a pointer value #selector:offset or
Identification of the job code for D

& Identifier for DEF symbols
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 11

User Interface

debug2.fm

DEBUG Dialog States
2.5 DEBUG Dialog States

After restart, outside the DEBUG session, DEBUG is at the control level. At the
control level, the second prompt character is a BLANK (’ ’).

After a restart, during a DEBUG session, DEBUG is at the interactive level and
requests an instruction to be entered (irrespective of the state prior to restart). In
this state, the second prompt character is ’*’.

A DEBUG session is opened by a START command. Working with DEBUG
requires that a session be opened beforehand. In doing so, all definitions made
in the previous session are deleted. The START command gives direct access to
the interactive level. At this level the second prompt character is not equal to
BLANK (’ ’).

; End of a DEBUG statement (not carried out immediately), or Dummy statement

, for separating operands in DEBUG statements

: Separating label name and AT keyword, or
Separating the components of an address entry or
Separating the components of a time entry

(for Length entry and for parenthesis in DEBUG statements

) for Length entry and for parenthesis in DEBUG statements

= Allocation in SET, DEF and REDEF statements, or
Relation operator for IF and DOWHILE

> Relation operator for IF and DOWHILE

< Relation operator for IF and DOWHILE

-> Dereferencing symbol in expressions
in expressions

+ in expressions

* in expressions or
in procedure-related addresses (current procedure), or
for sub-qualification of trigger point names

- in expressions

/ in expressions or
Separation of the date entry components

/* Start-of-comment character

*/ End-of-comment character

’ for selecting the numeric representation (T’,B’,H’), or
HEX-strings delimiter (X’), or
CHAR-strings delimiter (’..........’)

. in names and figures for subdividing character strings

_ in names and figures for subdividing character strings

! End of a statement (carried out immediately), or
Initiating statements which have not yet been executed
 A31003-H3100-S106-06-7620, 06/2018
12 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug2.fm

User Interface

Prompting
Only the TERM command can be used for quitting the DEBUG session. When the
debugger quits the DEBUG session, all DEBUG activities are stopped. After the
TERM command, the debugger is placed at the control level.

The ’IN’ command shifts the debugger from the control level to the interactive
level. If the command is given at the interactive level, the debugger will stay at this
level.

From the interactive level, the debugger is moved to the control level through an
END statement. 
At the interactive level, all commands can be given; at the control level, only
special commands can be given.

2.6 Prompting

In addition to the subdivision into control level and interactive level, other system
states have an effect on the validity of the commands. They are, therefore,
indicated to the user in the input request with the aid of prompt characters.

A prompt invariably comprises three characters:

• the first character indicates the system state,

• the second character indicates the dialog state in DEBUG,

• the third character indicates the dialog state with the ’intermediary’.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 13

User Interface

debug2.fm

Prompting
First prompt character (system state)

IMPORTANT: The comment mode of the control level is indicated at the control
level only, the system status is indicated at the interactive level.

Meaning effect on the commands
(- : invalid)

(+ : possible addition)

+ Outside the DEBUG Session -
-
-

TERM, FILE, IN, RUN, RESET,
SAVEON, SAVEOFF, TRIGGON,
SEL
TRIGGOFF,

* During the DEBUG Session - START

SAVEON is set - GO, GOTIL, BREAK, REMOVE,
GOFOR

? Break mode activated -
-
-

RUN, SAVEON, SAVEOFF, FILE
IN: Parameter RUNFILE
PRINT: Parameter INFILE

$ Processor stopped at trigger +
+
+
-

Use of register names when
entering numerical values
Address entries relating to a
procedure in instructions (P*, PB,
..)
D #R as an instruction
as for ’?’

% Processor stopped interactively - as for ’?’

/ Comment mode - Everything ignored except for */

Table 3 First Prompt Character
 A31003-H3100-S106-06-7620, 06/2018
14 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug2.fm

User Interface

Input via AMO DEBUG
Second prompt character (dialog state of the interactive level)

IMPORTANT: A BLANK (’ ’) indicates that the system is not at the interactive
level but at the control level 
The ’+’ character in this position indicates that this is the first prompt following a
restart. As a rule, this prompt appears on the screen only for a short time,
because it is overwritten by the MTH message V120.

Third prompt character (state: dialog with the intermediary)

Typical prompt characters

2.7 Input via AMO DEBUG

The AMO interface is activated with:

EXEC-DEBUG;

Meaning

* Requesting an instruction, all previous ones having been executed

Debug at control level (see note)

+ Restart (see note)

! Requesting an instruction, previous one not having been executed

: Request inside a trigger point definition

- Request within IF or DOWHILE

/ Request within a comment

. Request within a macro definition

; Statement not yet completely entered.

Table 4 Second Prompt Character

Meaning

> Within the dialog with the intermediary

< Outside the dialog with the intermediary (for MTH only)

Table 5 Third Prompt Character

+ > Debug is outside the session (at the control level)

* > Debug is within the session at the control level

**> Debug is within the session at the interactive level

$.> While the processor is stopped at a trigger, a Macro is defined at the interactive
level.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 15

User Interface

debug2.fm

Input via AMO DEBUG
Followed by the question which processor the dialog should be opened for. Once
the processor identification has been input (it may also be entered together with
the ’EXEC-DEBUG’ call) the DEBUG prompt appears followed by the AMO input
request. Now an entry may be made. The entries should be embedded in the MMI
syntax of the AMOS. This means that the ’ " ’ character must appear at beginning
and end of an entry. If this is not the case, the special characters are interpreted
by the MMI and not forwarded to DEBUG. This should be observed in particular
when entering ’;’ and ’!’. If a ’;’ character is to be forwarded to DEBUG, ’";"’ should
be entered: The dialog is carried on with the processor specified upon activation.
If a dialog is to be carried on with another processor, the AMO must be
deactivated and then reactivated again. The AMO is deactivated with the DEND
command. If there is no entry for more than 15 minutes, the AMO will deactivate
itself.

IMPORTANT: The BREAK, GO, GOFOR, REMOVE, GOTIL statements must
not be entered via this AMO interface. During break mode, (distinguishable by
prompt characters ’?’, ’%’, and ’$’) no entries must be made. Deadlock occurs in
any case when the processor is frozen up, since all tasks (with the exception of
MTH and DEBUG) are suspended at freeze-up. 
When TRIGGON is activated, logging takes place via the MTH interface only
(MTH does not have to be activated for this purpose).

Example: (E): this line was input

(A): this line was output

(AE): this line contains inputs and outputs

(A) EXEC-DEBUG:A1;

(A) H500: AMO DEBUG STARTED

(A) + >

(A) PLEASE ENTER DEBUG FOR A1

(AE) *START

(A) 0304I START :DEBUG V4.0 KV01: SESSION STARTED AT:

(A) 11:08:06 21/06/
1987

PROC-ID = 019

(A) **>

(A) PLEASE ENTER DEBUG FOR A1

(AE) *"d 2BF8:12(6);"

(A) *!>
 A31003-H3100-S106-06-7620, 06/2018
16 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug2.fm

User Interface

Input via Miniterminal Handler (MTH)
2.8 Input via Miniterminal Handler (MTH)

The MTH is activated by entering ’CTRL D’. If it is not known whether MTH must
be activated, or what status the dialog is in, the status is displayed by depressing
the return key (in dependence on the terminal device!!). Either DEBUG prompting
or the following message will appear:

MTH V120: THE FOLLOWING APPLICATIONS HAVE BEEN DEFINED: 
01 DEBUG DIALOG(13) CAN BE STARTED WITH ’CTRL D’!

The MTH must be activated only in the second case (the MTH message tells
which processor is being accessed). When the MTH has been activated, the
DEBUG prompt appears. The processor to which the terminal is connected can
now carry on the dialog with DEBUG. When the dialog is to be terminated, the
’DEND’ command must be entered.

2.9 Sporadic Messages

Sporadic messages are messages which are not immediately output in answer to
a DEBUG instruction. Typical sporadic messages are messages concerning the
change of protocol files and the processor-stop message. Sporadic messages
are output both via the the AMO interface (provided a dialog has been set up) and
via the MTH interface. Output of the sporadic messages is stopped while a
command is being processed.

Characteristics of the MTH interface:

(A) PLEASE ENTER DEBUG FOR A1

(AE) *"dend"

(A) AMO-DEBUG-219 MAKING HICOM DEBUG AVAILABLE

(A) EXEC EXECUTED;

(A) EXEC-DEBUG:A1;

(A) H500: AMO DEBUG STARTED

(A) *!>

(A) PLEASE ENTER DEBUG FOR A1

(AE) *"!"

(A) **>

(A) PLEASE ENTER DEBUG FOR A1

(A) *
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 17

User Interface

debug2.fm

Characteristics of Monoprocessor Systems (Hicom 3x3)
The sporadic messages are output irrespective of whether or not the dialog with
the MTH has been opened. They are concluded with ETX(=H’03) (for application
via DASIST).

When the ESC key is pressed, the output of sporadic messages is stopped until
the return key is pressed again.

2.10 Characteristics of Monoprocessor Systems (Hicom 3x3)

Monoprocessor systems do not have a mini-terminal handler. Instead, the MTH
interface is emulated by the CMS. The service terminal can only be plugged into
the second V.24 interface of the DM80 in the 3rd row of the CC80 shelf (see
DM80 description in "Modules" chapter of the Hicom 300 Service Manual). 
This V.24 interface must be configured as an "asynchronous terminal" interface,
in order to be able to use the debugger.

Press the keys "CTRL" and "D" simultaneously to set up a dialog connection to
the debugger. The dialog connection is terminated by entering "DEND".

Sporadic debugger-messages can only be output during a dialog session.

IMPORTANT: It is, of course, also possible to open a "Terminal Task Session" at
the V.24 interface. Enter "CTRL T" 
Always terminate a terminal task session before starting a debugger dialog
session with "CTRL D".
 A31003-H3100-S106-06-7620, 06/2018
18 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

START Command (Start of a DEBUG Session)
3 Function Description of DEBUG Special Commands

complete description of all input variants of a command can be seen from the
syntax diagrams.

The following number entries in DEBUG statements are possible:

• hexadecimal (H’....),

• binary (B’....)

or

• decimal (T’....).

Unless specified, hexadecimal numbers are assumed.

3.1 START Command (Start of a DEBUG Session)

The DEBUG session is opened. This is a requirement for testing with DEBUG.
This command serves to initialize the internal DEBUG tables and regions. When
this command has been executed, no test orders, macros or DEBUG variables
are defined. As to the DEF symbols, only the standard DEF symbols are defined
and re-initialized. The trace buffer is empty. The start acknowledgement contains
the DEBUG version, the date and time of day as well as the processor number
(decimal und hex.). The START command changes to the interactive level.

Example:

3.2 SAVEON Command (Activating the Patch Function)

This command is used to activate the patch function in order to change code or
data on the hard disk. Following SAVEON all subsequent SET instructions are
executed on hard disk. The main memory remains unchanged. It is possible to
use the SET commands (e.g. in a runfile or in a command stack) to make the
changes initially in the memory (in the SAVEOFF state), then to test the changes,
and subsequently to carry out the changes on hard disk using the identical SET
commands (runfiles, stacks) in the SAVEON state. This ensures that the same

START;

0304I START :DEBUG V300 FT2 :STARTS AT:

10:11:12 02/02/1994 PROC-ID 001T DP-TYPE: DP386

APS: S0-EF0.20.059 AMO-APS: B0-EF0.20.059

**>
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 19

Function Description of DEBUG Special Commands

debug3.fm

SAVEOFF Command (Deactivating the Patch Function)
changes are made in the memory and on hard disk. ’Patching’ cannot be linked
to a trigger. At a trigger, SET instructions are executed in the memory only, even
after SAVEON. Reloadable subsystemes (AMO) cannot be patched with DEBUG.
Data not initialized in the program must be patched dynamically (by inserting an
appropriate code in a patch area). The patch function in DEBUG should be
considered only an expedient. It offers no support to administration and recording
of the changes performed.

After each RUN command and each return to the control level, the SAVEOFF
state is set. This state can be recognized by the prompt character (system state:
#).

IMPORTANT: Before executing a special command, which is initiated from the
interactive level, the system state is set back to SAVEOFF.

3.3 SAVEOFF Command (Deactivating the Patch Function)

This command is used to deactivate the patch function. SET instructions are now
only effective in the memory.

3.4 TERM Command (Terminating a DEBUG Session)

This command terminates the DEBUG session. All test jobs are deactivated. The
system waits for any running test order processing operation to be terminated. If
it is not terminated within 5 seconds, a warning is output together with the Term
message. This message is also output when some stack areas are still assigned
though test order processing has ceased. In case a log file is used, the entire
trace buffer is saved before the file is closed.

Example:

3.5 RESET Command (Resetting the Trace Buffer)

This command serves to re-initialize the trace buffer, the old contents being lost.
The command is rejected in case logging to an assigned log file is still in progress.

TERM

0325I TERM :DEBUG TERMINATED AT:

10:11:12 04/08/1993 PROC-ID = 001T 01H
 A31003-H3100-S106-06-7620, 06/2018
20 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

IN Command (Entering Instructions Interactively)
3.6 IN Command (Entering Instructions Interactively)

This command transfers the system (data) from the control level to the interactive
level, where special commands as well as instructions can be entered. This level
can be recognized at the prompt character (2nd character not equal to BLANK).
Once the system is at the interactive level, it will stay there; however, the save
identifier is set to SAVEOFF.

With the ’IN’ command, a file can be entered with parameter ’RUNFILE=file
name’; in this file entries can be logged simultaneously at option. The
simultaneous logging procedure is controlled with RUNON and RUNOFF. If the
specified file exists, it will be continued. (The name of the runfile is composed of
’:AMD:R/’ and the specified file name).

Example:

IN:RUNFILE=PROT1

IMPORTANT: The command is, as a rule, required only after a restart, since all
commands are possible at the interactive level and therefore it is not necessary
to quit this level.

3.7 RUN Command (Entering Instructions from the File (Runfile))

This command is used to read commands from a file. The file from which data is
to be read in is identified by keyword ’INFILE’. (The name of the runfile is
composed of ’:AMD:R/’ and the specified file name). 
When a wrong instruction is detected, the readin procedure is aborted; this can
be prevented by entering the FUNC=CHECK parameter. The FUNC=CHECK
function is, however, not generally enabled, since errors may interfere with the
desired procedure. For example operations orginally linked to triggers might turn
into immediately executable instructions. Error messages are output in the same
way as with direct input. If the procedure is aborted, the line number of the first
faulty statement is output as well. Valid instructions are executed and
acknowledged as for the interactive level. Abortion on account of a file access
error is separately reported.

The optional PROT=NO parameter can be used to suppress the AT statement
acknowledgement. This makes sense whenever a great number of test orders
are specified in a runfile.

Example:

RUN:INFILE=RFAT,PROT=NO

Runfiles are files of the type BYTEFILE resident on a hard disk whose record
length is required to be 80 bytes. (The name of the runfile is composed of
’:AMD:R/’ and the specified file name).
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 21

Function Description of DEBUG Special Commands

debug3.fm

FILE Command (Controlling the Trace Buffer Logging Operation)
3.8 FILE Command (Controlling the Trace Buffer Logging Operation)

This command is used to assign DEBUG a log file on hard disk. Thus the trace
buffer contents can be logged to this file. The keywords ’CURFILE’ and
’SUCFILE’ are used to specify the file that is to be written to. If only one file has
been assigned, logging is terminated when the file is full. If two files have been
assigned, both files are alternately used.

Parameter CUR=CLOSE can be used to close the file that has been assigned
with CURFILE. Analogously, parameter SUC=CLOSE is specified to close the file
assigned with SUCFILE. A closed file is no longer used for logging. A switchover
to the remaining file is initiated automatically. A closed file can be reassigned with
CURFILE and SUCFILE. (The name of the log file is composed of ’:AMD:P/’ and
the specified file name).

Examples:

FILE :CURFILE=PROTFILE/001,SUCFILE=PROTFILE/002
 
FILE :CURFILE=PROTFILE/001
 
FILE :SUCFILE=PROTFILE/002 
 
FILE :CUR=CLOSE,SUC=CLOSE
 
FILE :SUCFILE=PROTFILE/003,CUR=CLOSE

IMPORTANT: If the only file that is still assigned is closed with SUC=CLOSE or
CUR=CLOSE, logging is aborted immediately. Hence, it is possible that not all of
the trace buffer entries have been written. 
If a file assigned in "File" does not yet exist, it will be set up by DEBUG (length:
10000 bytes). If it does exist, it will be overwritten. The file should, however, be a
SAM file.

3.9 PRINT Command (Printing the Trace Buffer and the Log File)

This command may be used outside the DEBUG session as well. There are two
PRINT command applications:

• Without parameter INFILE, the trace buffer is output;

• with parameter INFILE, the specified log file is output.

Only closed files can be output. (The name of the log file is composed of’:AMD:P/
’ and the specified file name). A file is closed when it is full (a message to this
effect is issued to the user) through a FILE command with CUR=CLOSE or
SUC=CLOSE, or through the TERM command.
 A31003-H3100-S106-06-7620, 06/2018
22 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

PRINT Command (Printing the Trace Buffer and the Log File)
The user can select output of the trace buffer or the log file by specifying selection
criteria. If parameter INF=CUE is entered, output is suppressed altogether, the
system only lists the number of entries that are available with the specified
selection.

Possible selection critera for the PRINT command:

• Time (TIMEB, TIMEE)

Only entries made between TIMEB and TIMEE are output. Default value for
TIMEB is 00:00:00, for TIMEE 23:59:59.

• Date (DATEB, DATEE)

Only entries made between DATEB and DATEE are output. Default value for
DATEB and for DATEE: current date

• Daily (PERIOD)

Only entries made between TIMEB and TIMEE are output, on the days
between DATEB and DATEE. If the PERIOD parameter is not entered, all
entries that have been made between DATEB,TIMEB and DATEE,TIMEE will
be output.

• Trigger entry

Only the trigger entries are output. This supports program sequencing. If this
parameter is not entered, all entries will be output (i.e. also TRACE, ACT,
etc.).

• Label name (LABEL)

This parameter serves to output only those entries that belong to the test
orders which match the specified name. With a partially qualified label (for
example LABEL=AB*), all entries of test orders that match the specified
partial name are output. If LABEL is entered, no instructions will be output.

• The last entries (REC)

This is possible only when the trace buffer is output. Output is limited to the
last n entries; only those of them being output, that are subject to selection. If
the TEC parameter is entered in addition, REC identifies the number of
entries to be output (with special consideration to selection) (values for n: 1
bis 255).

• Defining the first entry (TEC)

This is possible only when the trace buffer is output. TEC specifies after how
many entries output should be started. Counting always starts with the oldest
entry. If TEC is not entered, output will start with the oldest entry. If the trace
buffer is written to during output, the entry to be output is likely to be
overwritten. A message is issued and printing is aborted. If the trace buffer
does not contain as many entries as indicated by TEC, TEC is ignored
(possible values : 1 to 65535) 
Any combination of the above selection criteria is possible.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 23

Function Description of DEBUG Special Commands

debug3.fm

TRIGGON Command (Activate Trigger Mode)
PRINT:TIMEE=14:30:00,DATEB=10/01/83,TLOG=ON

Day
Month

Year

PRINT:INFILE=PROTFIL/001,TIMEE=15:20:00,

Second
Minute

Hour

DATEB=17/02/84,PERIOD=DAILY

Examples:

Only the trigger entries that were created between 10.1.83, 0.00 hours and until
14:30 hours on the current date are output from the trace buffer.

All entries created daily between 00.00 hours and 15.20 hours from 17.02.84
until, are output from the log file specified.

PRINT:LABEL=A*,REC=5,TLOG=ON

The last 5 trigger entries whose label starts with ’A’ are output from the trace
buffer.

PRINT:LABEL= *,INF=CUE,TLOG=ON

The number of trigger entries present in the trace buffer is output.

PRINT:TEC=60000,REC=1

The last entry in the trace buffer is output. (Trace buffer does not hold 60000
entries)

PRINT:TEC=333,REC=5

Five entries are output, starting with what is currently the 333rd entry.

3.10 TRIGGON Command (Activate Trigger Mode)

This command activatess the mode in which test order activities are directly
output on the terminal. 
This mode is called trigger mode. 
Logging takes place only via the DP286 interface using the Miniterminal Handler
(MTH), irrespective of whether the dialog is carried on via AMO DEBUG or via
Miniterminal Handler. Before the trigger mode can be activated, the trigger
selection must have been entered (see SEL command). However, if, for some
reason, the trigger command has been issued beforehand, DEBUG generates a
SEL command with the default criteria. Triggering starts with the entry which, at
activation time, was the last entry in the trace buffer. If the trace buffer entry
operation is faster than logging, a message to this effect will be issued. Then the
procedure continues with the most recent entry. The trigger mode is independent
of the logging to hard disk (log file) procedure. Even with outputs in progress,
 A31003-H3100-S106-06-7620, 06/2018
24 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

TRIGGOFF Command (Deactivate Trigger Mode)
entries can be made. To this end, the ESC key (at Qume) must be pressed (H’1B).
Triggering is then suspended until the entry is terminated with the RETURN key.
If entries are terminated with the ESC key, triggering will stay suspended.

3.11 TRIGGOFF Command (Deactivate Trigger Mode)

This command can be used to deactivate triggering.

3.12 SEL Command (Set Trigger Mode Selection)

This command can be used for setting the selections for the trigger mode. This
command does not yet activate the trigger mode. The criteria remain set until a
new SEL command is given. This may also be done when the trigger mode is
already ON. The SEL command syntax is identical with the PRINT command
syntax, i.e. the same parameters as for PRINT can be specified. However, the
parameters INFILE, TEC, REC and INF are not evaluated. If LABEL is not
specified, default value LABEL=’*’ is used. If logging (triggering) is to continue
after midnight (00.00 hrs.), parameter DATEE must be specified, since the actual
date (at entry time) is the default value.

3.13 LIST Command (Output of Lists)

This command may be used to output the following lists:

List of all triggers, at which tasks are stopped,

• List of all DEF symbols,

• List of standard DEF symbols,

• List of newly defined DEF symbols,

• List of all DEBUG variables,

• List of all trigger points or breakpoints

• List of all macros.

The desired list is identified by keyword ’TAB’.

Examples:

LIST:TAB=STOP (Display of stopped tasks)

LIST:TAB=DEF (Display of DEF symbols)

LIST:TAB=DEFS (Display of standard DEF symbols)
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 25

Function Description of DEBUG Special Commands

debug3.fm

LIST Command (Output of Lists)
Examples (with output):

LIST:TAB=DEFN (Display of newly defined DEF symbols)

LIST:TAB=DCL (Display of DEBUG variables)

LIST:TAB=AT (Display of test jobs)

LIST:TAB=MAC (Display of macros)

LIST:TAB=AT!

0440I TAB=AT :TESTORDER TABLE :

0463I TAB=AT :NAME COUNTER STATUS KIND ADDRESS

19083A28 00000 ACT BREAK 1908:3A28

CPEVT 00002 ACT TEST 65C8:06A4

0436I TAB=AT :END OF TABLE

LIST:TAB=DCL!

0437I
TAB=DCL

:TABLE OF DEBUGVARIABLES:

0466I
TAB=DCL

:NAME MODE VALUE ADDRESS

A BYTE 00 5990:2921

CPB_IDX INT 0000 5990:2940

LODEN INT 0000 5990:295F

LINE INT 0000 5990:297E

L INT 0000 5990:299D

K INT 0000 5990:29BC

J INT 0000 5990:29DB

I INT 0000 5990:29FA

0436I
TAB=DCL

:END OF TABLE

LIST:TAB=DEF
!

0434I
TAB=DEF

:TABLE OF DEF-SYMBOLS:

0465I
TAB=DEF

:NAME ADDRESS LENGTH TYP
 A31003-H3100-S106-06-7620, 06/2018
26 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

DEF Command (Define Symbols)
3.14 DEF Command (Define Symbols)

The DEF command assigns an address and a length to the specified name
(maximum 26 characters). These DEF symbols can be used instead of numeric
addresses in AT and D statements.

A DEF statement comes in two different formats:

• the address that is to be assigned to the symbol is specified either numerically
or

• through an existing DEF symbol and a relative address (offset).

In the first case, a specific length must be specified, in the second case, and
unless its length is explicitly specified, the new symbol is assigned the old symbol
length.

Examples:

PATCH1 5948:000
C

00001 STD

PATCH2 5948:001
E

00001 STD

PATCH3 5948:003
0

00001 STD

GG_P_AR_ON
E

5948:004
2

00001 STD

GG_P_AR_TW
O

5948:005
0

00001 STD

LANGUAGE 59F0:001
4

00001 STD

ACTIN 59F0:002
E

00001 STD

ACTOP 59F0:002
D

00001 STD

DEACTIN 59F0:002
C

00001 STD

DEACTOP 59F0:002
B

00001 STD

SETIN 59F0:002
7

00001 STD

SETOP 59F0:002
6

00001 STD

WRITE_IN 59F0:000
E

00001 STD

0436I
TAB=DEF

:END OF TABLE
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 27

Function Description of DEBUG Special Commands

debug3.fm

DEF Command (Define Symbols)
DEF &MARKE 1238:5678 (1);
 
DEF &BUFFER 4E68:10D0 (20);
 
DEF &HALT = &MARKE + 20;
 
DEF &BUFFER2 = &BUFFER + T’50 (200);

Explanation:

Address 1238:5678 is now assigned the name of &MARKE in length 1, and
address 4E68:10D0 is assigned the name of &BUFFER in length H’20.
(Command ’D &BUFFER;’ would be used to dump the memory contents in length
H’20) from this address onward. Subsequently, symbol &HALT is assigned the
address 1238:5698 in length 1. Memory area &BUFFER2 is assigned the
address of &BUFFER, with the offset increased by decimal 50 with the
hexadecimal length 200, in this case: address 4E68:1102.

IMPORTANT: For certain applications, standart symbol definitions have already
been provided. See the following sections.

Standard DEF symbols to suppress acknowledgements:

For controlling the logging of DEBUG activities in the trace buffer and on
terminals, the following symbols are provided:

TRUE is preset, i.e. the statements are written in the trace buffer and/or output. 
’SET <symbol> = FALSE;’ serves to suppress entry of the corresponding
statement in the trace buffer and ’SET <symbol> = TRUE;’ to re-enable it.

Examples:

SET &SETOP = FALSE;

SET instructions are no longer entered in the trace buffer.

SET &ACTIN = TRUE;

ACT instructions are again entered in the trace buffer

Standard DEF symbols to write instructions into the trace buffer:

&WRITE_IN

FALSE is preset, i.e. the instructions are not written into the trace buffer and/or
output. 
’SET &WRITE-IN = TRUE!’ serves to activate entry into the trace buffer and ’SET
&WRITE_IN = FALSE!’ to deactivate it again.

&ACTIN, &ACTOP (ACT instructions)

&DEACTIN, &DEACTOP (DEACT instructions)

&SETIN, &SETOP (SET instructions)
 A31003-H3100-S106-06-7620, 06/2018
28 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

REDEF Command (Redefine Symbol)
Standard DEF symbols for Exit routines:

&PATCH1
 
&PATCH2
 
&PATCH3
 
&GG_P_AR_ONE
 
&GG_P_AR_TWO

These are symbols of addresses that are accessed by DEBUG when the EXEC
instruction is used at a test point (trigger). For the first three symbols, 18 bytes
are available, otherwise 14 bytes are available for coding (e.g. exit to a patch
area). The test object registers are not made available.

Standard DEF symbols to choose the language:

The language in which error messages are output may be either GERMAN or
ENGLISH. ENGLISH is preset.

with

SET &LANGUAGE = ’D’!

a switchover to GERMAN is initiated and

with

SET &LANGUAGE = ’E’!

a switchover is made to ENGLISH.

3.15 REDEF Command (Redefine Symbol)

REDEF is used to assign a new address and/or length to an already existing
symbol. If the length is not specified, the old symbol length is retained. As with the
DEF instruction, the address assigned to an existing symbol may be specifed
numerically or with the aid of a DEF symbol.

Examples:

DEF &A 1238:0 (7);

DEF &B = &A + 100 (5);

REDEF &A = &B + 10; /* &A: address 1238:110, length 5 */

REDEF &B 6458:21 (1A);

REDEF &A E100:123; /* &A: address E100:123, length 5 */
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 29

Function Description of DEBUG Special Commands

debug3.fm

DCL Command (Define DEBUG Variable)
3.16 DCL Command (Define DEBUG Variable)

DCL defines variables (name max. 26 characters) with modes %INT, %BYT,
%POI, %CHAR or %BOOL. Up to 6 variables of the same mode can be defined
in parenthesis. DEBUG variables can be modified by way of SET instructions and
output by way of D instructions. They can be used in address modifications and
in expressions (= expressions with the following arithmetic operations + , - , * , /).

Examples:

DCL (%ABC,%XYZ) %CHAR;
 
DCL %ZAHL %INT;
 
DCL %B %BOOL;
 
DCL %C %POI;

Now the following variables exist: the character mode variables %ABC and
%XYZ, the pointer variable %C, the integer variable %ZAHL and the Boolean
variable %B which can be changed for example with the following SET
instructions

SET %C = #1238:5678; 
 
SET %B = TRUE; 
 
SET %ZAHL = 5; 
 
SET %ZAHL = %ZAHL + 1;

or whose contents can be output for example with

D %ZAHL,%B,%C;

.

3.17 REDCL Command (Redefine DEBUG Variable)

REDCL can be used to provide an already existing variable with a new mode.
This redefinition is not effective in operations where this variable has already
been used. The REDCL instruction does not reinitialize the variable.

Examples:

DCL %B %BOOL;
 
REDCL %B %INT;

Firstly, a Boolean variable %B is defined. It is converted into an integer variable
with REDCL.
 A31003-H3100-S106-06-7620, 06/2018
30 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

AT Command (Define Test Order)
3.18 AT Command (Define Test Order)

AT is used to define a test order for the specified address. It can be accessed with
the label (name of up to 8 characters). The operations that are intended to take
place at the test point are delimited by keywords ’DO’ and ’OD’. Test orders
without operations are admissible as well. (Application: if reaching the trigger
point is of importance). Within a test order, an entry is requested with a prompt,
whose dialog status is ’:’ (for example with *:>).

IMPORTANT: Test orders must be defined before they can be activated.
However, mere definition of a test order will not initiate any test activities. 
Once a test order has been defined, it can be activated and deactivated any
number of times, as long as it is not deleted with the REMAT statement. 
 Before an AT command can be processed, all instructions that have not yet been
executed are forcibly executed.

The data collected at a trigger point is written into the trace buffer and can be
saved in parallel in a log file. It can be output on a terminal with PRINT.

Examples:

L1AX2:AT E680:C69 DO OD;

GRISMURD:AT &MARKE DO OD;

Now, test order LABEL is defined at address E680:C69. It may be activated with
’ACT L1AX2;’. On running through an active test order, the operations specified
after DO are carried out. Test order GRISMURD is defined at the address defined
by &MARKE. This test order does not require any operations to be carried out.
Only attaining this test order is logged.

3.19 REMAT Command (Delete Test Order)

REMAT enables deactivated test orders to be deleted. Subsequently, they can no
longer be reactivated or run through again. The names of deleted test orders can
be used again. If all test orders are to be deleted, ’ALL’ must be specified instead
of label name. In doing so, care should be taken to delete only inactive test
orders. If a test order cannot be deleted, a message will be issued.

Examples:

LAB1: AT 1238:56 DO OD;

REMAT LAB1;

REMAT ALL;

First test order LAB1 is defined. It is deleted again with REMAT LAB1. REMAT
ALL deletes all deactivated test orders.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 31

Function Description of DEBUG Special Commands

debug3.fm

MDEF Command (Define Macro)
3.20 MDEF Command (Define Macro)

MDEF defines a macro which is addressed using its macro name (up to 8
characters). 
A maximum of 20 macros may be defined. 
The MDEF instruction serves to combine the following operations (up to MEND)
into one macro operation. Within a macro definition, an entry is requested with a
prompt whose dialog status is ’.’ (for example with *.>).

Before the MDEF command is processed, all instructions that have not yet been
executed are forcibly executed.

The macro operation can be executed by calling the macro (MCALL).

Example:

3.21 MCALL Command (Call Macro Operation)

MCALL is used to call a previously defined macro.

Example:

MDEF MACNAME1;

D;

SET;

SET;

MEND;

LABEL: AT 400:5 DO

 MCALL MACNAME1;

OD;

MDEF MACNAME2;

........;

MCALL MACNAME1;

........;

MEND;
 A31003-H3100-S106-06-7620, 06/2018
32 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

REMMAC Command (Delete Macro)
3.22 REMMAC Command (Delete Macro)

REMMAC is used to invalidate a previously defined macro. The macro can be
reactivated by redefining it (with the same name). A macro deleted with REMMAC
will be ignored upon MCALL. MCALL will not be carried out again before the
macro has been redefined with the same name.

REMMAC will not make any memory space available in the macro table. If a table
is full, it remains full.

Example:

REMMAC MACNAME1;

3.23 RUNON Command (Runfile Online: Activate Logging)

Following these instructions, entries are written in the file (runfile) specified with
the ’IN’ command. The RUNON instruction must be placed in a separate line.
Wrong entries are logged as well. RUNOFF is set after the ’IN’ command. In case
no file has been assigned with IN, this instruction has no effect.

3.24 RUNOFF Command (Runfile Online: Deactivate Logging)

This instruction terminates logging of entries in the file. Changeover from RUNON
to RUNOFF can be repeated as often as desired. The ’IN’ command is followed
by RUNOFF.

IMPORTANT: The files generated can be specified as runfiles in the RUN
command. 
The RUNOFF instruction should be placed in a separate file, otherwise it would
not be clear whether the entry containing RUNOFF is written or not.

3.25 EXEC Command (Start Exit Routine)

EXEC <routine> is used to start exit routines; i.e. DEBUG branches to the
procedure assigned to <routine>. The procedures have been provided by
DEBUG as dummy procedures. They must first be supplied with the desired
commands through patching. As a rule, an additional patch area is required, the
length of dummies being only 14 to 18 bytes. As an alternative, dummies may be
replaced by the desired procedures in the DEBUG source. However, this would
require a new production of the Hicom debugger.

Example:
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 33

Function Description of DEBUG Special Commands

debug3.fm

STOP Command (Stop Task)
EXEC GG_P_AR_ONE;

3.26 STOP Command (Stop Task)

STOP will place in the wait state any task that has reached a trigger point where
the STOP command is defined. The remaining tasks continue running. When a
task is stopped, this is displayed at the terminal. In addition to the STOP
message, the current register contents of element 80286 of the stopped task are
output.

3.27 CONT Command (Continue Task)

CONT will continue all tasks stopped at a trigger point. ’CONT ALL;’ will continue
all tasks. 
In case several tasks have been stopped at a trigger point, they can only be
continued together.

Examples:

CONT GRISMURD;

CONT ALL;

3.28 BREAK Command (Stop Processor)

If this command is issued as an instruction, two functions will be performed.

• Firstly, the break mode is activated, provided it was still inactive. As a result,
BREAK operations will be effective from this time onward.

• Secondly, the processor is stopped. In this instance, the first prompt character
(system status) is set to ’%’.

If an operation at a trigger point is concerned, the processor is stopped only in
case the BREAK mode has already been activated. Otherwise, the operation is
ignored and a corresponding message output. If the processor has been stopped
by the break operation, a message is ouptput. In this case, the first prompt
character (system status) is set to ’&’. The registers are available for addressing,
D #R is allowed, procedure-related D is possible; with VIEW and INSP, entries T*
and J* relate to the task that initiated the processor stop.

3.29 GO Command (Continue Processor)

This command comprises two functions.
 A31003-H3100-S106-06-7620, 06/2018
34 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

GOFOR Command (Deactivate Break Mode)
• Firstly, it activates the break mode, provided it has not been activated yet.
This causes the BREAK operations to become effective as from this moment.

• Secondly, the processor is thawed (continued) if it was frozen (stopped). This
function has no effect on the definition of breakpoints. In this case, the first
prompt character (system status) is set to ’?’.

3.30 GOFOR Command (Deactivate Break Mode)

This command has several subfunctions.

• The break mode is switched off. This causes the BREAK operations to
become ineffective as from this moment.

• The processor is thawed (continued) if it was frozen (stopped). The
breakpoints are deactivated and deleted. In this case, the first prompt
character (system status) is set to ’*’.

3.31 GOTIL Command (Define Breakpoints)

This command has several subfunctions.

• The break mode is activated. This causes the BREAK operations to become
effective as from this moment.

• The processor is continued if it had been stopped.

Breakpoints are defined and activated at the addresses specified. The name of
the breakpoints is constructed from the specified address: the numerical entries
of selector and offset are combined with leading zeros to form an 8-character
name (4F8:120 becomes 04F80120). The breakpoints in Debug messages are
identified by this name. If a breakpoint is reached, the processor is stopped and
a message is issued via Miniterminal Handler (MTH). In this case, the first prompt
character (system status) is set to ’&’. The registers are available for addressing,
D #R is allowed, procedure-related D is possible; with VIEW and INSP, entries T*
and J* relate to the task that initiated the processor stop. However, as before, only
instructions but no operations (i.e. no IF, DOWHILE, MCALL,....) are permitted.

Example:

GOTIL 2BF8:2356; 
GOTIL 2BF8:1456,2BF8:134,2E50:345;

IMPORTANT: If the address is located in the Miniterminal Handler (MTH) or
DEBUG, the processor will be stopped, however, no registers will be available. In
this particular instance, the first prompt character is ’%’ ;
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 35

Function Description of DEBUG Special Commands

debug3.fm

REMOVE Command (Delete Breakpoint)
3.32 REMOVE Command (Delete Breakpoint)

The breakpoints defined with GOTIL are deactivated and deleted with this
function. The breakpoints are not accessed under their generated names but
under their addresses, i.e. exactly as for the GOTIL command.

3.33 DOWHILE Command (Define Loop)

DOWHILE serves for defining loop operations. The loop definition is terminated
with ’OD’. A loop should contain at least one operation. Within DOWHILE an entry
is requested with a prompt, where the dialog status is ’-’ (for example with *->).
The execution of operations depends on the condition specified. This condition
can be any logical or arithmetic operation with DEBUG variables, constants or
addresses (length 1,2 or 4). 
DOWHILE can have 7 nesting levels.

To avoid endless loops in trigger point processing, the total number of trigger
loopings is limited to 255.

Examples:

DCL %B %BOOL;

DCL %I %INT;

SET %B = TRUE;

SET %I =1;

A1:AT &MARKE DO

DOWHILE %B;

IF 1250:AB = %I

 THEN SET %B = FALSE;

FI;

 SET %I = %I + 1;

OD;

OD;

MDEF MACRO1;

DOWHILE %I < 4;

 IF %B THEN SET %I = %I + 1; FI;

WRITE ’LOOP’;

OD;
 A31003-H3100-S106-06-7620, 06/2018
36 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

ACT Command (Activate Test Order)
3.34 ACT Command (Activate Test Order)

ACT activates one or several test order previously defined with AT. The test order
is addressed under its label. If all test orders are to be activated, the label name
to be entered is ’ALL’. Interrupt INT3 is diverted to DEBUG at the first ACT after
a restart.

Examples:

ABC:AT H’1238:H’17 DO ACT LABEL;OD;

ACT ABC,XYZ;

ACT ALL;

The Call ’ACT ABC,XYZ;’ will activate the test orders ABC and XYZ. When
passing through trigger ABC, test order LABEL is activated at the same time. The
’ACT ALL;’ call will activate all deactivated test orders.

3.35 DEACT Command (Deactivate Test Order)

DEACT deactivates test orders. The test order is addressed under its label. If all
test orders are to be deactivated, ’ALL’ must be specified as a label name.

Examples:

Deactivate LABEL test order

DEACT LABEL;

Deactivate GRISMURD and LABEL

DEACT GRISMURD,LABEL;

Deactivate all active test orders

DEACT ALL;

Upon reaching the trigger point XYZ, deactivatte all test orders including the test
order XYZ

XYZ:AT 2220:1111 DO DEACT ALL;OD;

3.36 LOGON Command (Activate Trigger Entry)

After LOGON, a trigger message is written in the trace buffer when a trigger is
reached. After the START command, LOGON is set.

MEND;
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 37

Function Description of DEBUG Special Commands

debug3.fm

LOGOFF Command (Deactivate Trigger Entry)
3.37 LOGOFF Command (Deactivate Trigger Entry)

After LOGOFF, no trigger message is written in the trace buffer when a trigger is
reached. This does not apply to trigger points where operations have to be
logged. For these, a trigger message is also transmitted after LOGOFF.

Example:

With LOGOFF a trigger entry is made only if the D command is executed as well.
In all other cases, no entry will be made in the trace buffer.

3.38 D Command (Display Memory Contents)

D is used to display memory contents of any length, DEBUG variables, or the
stack contents and register contents at the indicated code or data addresses. If
the area that is to be output goes beyond the defined area, the display is output
up to the end of the area defined by the selector. A message indicating that the
display was shortened is issued. The representation of the contents is determined
with the aid of a ’display picture’. It can be hexadecimal, binary, in the form of a
character string or in dump format. If no value is specified, output is in dump
format. 
If desired, the user may specify a job identifier, which is then output together with
the display acknowledgement. This allows the user to identify a display by means
of a code of his choice, rather than by checking its address. The job identifier is
output before the user data (address = contents). If no job identifier is specified,
0000 will be output. If the job identifier is #FFFF, only the user data will be output.
For an explanation of the output format, see section ’Messages’, under ’Additional
Information’.

Examples:

(1) D 1238:5678 (1);

(2) D 1238:5678 TO 1238:5721;

(3) D ABC0:EF (T’70) %BIN;

(4) D &MARKE %CHAR #1717;

(5) D %B;

(6) D %STACK(20);

(7) D #R;

A: AT &MARKE DO

IF & SPEICHER(1) = 1

THEN TRACE &SPEICHER (50);

FI;

OD;
 A31003-H3100-S106-06-7620, 06/2018
38 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

TRACE Command (Trace Memory Contents)
(8) D P*:A->(5);

(9) D (&MARKE,1238:5678(1))%char;

Explanations:

Examples (6),(7) and (8) are only possible at the trigger point or in interactive
mode if the processor has been stopped at the trigger point.

Examples (with output):

D H’65C8:H’10 (H’50)! 
0614T DISPLAY :DISPLAY EXECUTED 
0000 
65C8:0010 = 1C 19 67 15 1C 19 4D 18 1C 19 1C 19 1C 19 1C 19
..g...M......... 
65C8:0020 = 97 14 1C 19 1C 19 1C 19 1C 19 DE 12 37 16 37 16
............7.7. 
65C8:0030 = 6E 10 DE 12 08 08 D8 08 DF 09 08 08 B2 0A 85 0B
n............... 
65C8:0040 = 55 0C 25 0D 25 0D 25 0D 25 0D 25 0D F8 0D CB 0E
U.%.%.%.%.%..... 
65C8:0050 = 9E 0F 1C 19 C7 13 1C 19 1C 19 1C 19 1C 19 1C 19
................ 

D #R! 
0629T DISPLAY :DISPLAY REGISTER 
CS: IP: DS: SS: SP: BP: AX: BX: CX: DX: SI: DI:
ES: FL: 
65C8 06A4 65D0 B850 07E4 07E8 6200 1790 000B B85C 002F 01DE
0970 0216

3.39 TRACE Command (Trace Memory Contents)

This statement is the same as command D (see above).

(1) One byte of the indicated address is output in hexadecimals (default value).

(2) The bytes between Offset H’5678 and H’5721 of Selector H’1238 are output (= 170
bytes) .

(3) Starting from address ABC0:EF, 70 bytes are output in binary notation.

(4) Starting from the address defined by &MARKE, bytes are output in the implied
length, in the form of a character string. Non-printing characters (< H’20 or > H’7E
) are replaced by ’.’ The job identifier 1717 is output before trace data (address =
contents)

(5) Output of the value of DEBUG variable %B

(6) Output of 32 bytes of the stack contents

(7) Output of the register assignment

(8) Outputting a call parameter in length 5. It is assumed that the parameter is defined
as LOC parameter, therefore dereferencing takes place.

(9) Two memory areas are output, but in reverse order: the last area specified is output
first, the first area specified is output last. This is the case with all display commands
for which several areas have been specified.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 39

Function Description of DEBUG Special Commands

debug3.fm

SET Command (Modify Memory Contents)
3.40 SET Command (Modify Memory Contents)

SET modifies memory contents and DEBUG variables. The memory address can
be representaed numerically or with the aid of DEF symbols and DEBUG
variables. A maximum of 240 bytes per SET instruction can be modified. A job
identifier, which is output together with the SET acknowledgement, can be
specified if desired. This allows the user to identify a SET by means of a code of
his choice, without having to check the address. This job identifier is output before
the user data (address = contents). If no job identifier is specified, 0000 will be
output. If the job identifier is #FFFF, only the user data will be output.

Examples:

(1) SET %B = TRUE;

(2) SET %ABC = ’A’;

(3) SET %ZAHL = T’16+T’5 * T’17 #ABCD;

(4) SET &ANFANG TO &ENDE = &BEREICH;

(5) SET 18:34 (1) = B’00000101;

(6) SET 20:H’45 (T’11) = H’20:H’88-> + T’4;

(7) SET 988:65 TO 988:6A = 988:6B;

(8) SET &ADDR(2) = H’12FC;

(9) SET AB8:CD(3) = X’123856;

(10) SET FE0:C(9) = X’90;

(11) SET &ACTOP = FALSE;

(12) SET #P1404 = 0;

Explanations:

(1) DEBUG variable %B is assigned value TRUE,

(2) variable %ABC is assigned printable character ’A’ (ABCD being the order identifier)
and

(3) variable %ZAHL is assigned value 101.

(4) The area addressed by &BEREICH is transferred in length (&ENDE-&ANFANG+1)
to the location addressed by &ANFANG.

(5) A 5 is written in location H’18:H’34.

(6) The area addressed on the right is transferred with length 11 to memory location
H’20:H’45. The contents of H’20:H’88 are interpreted as a pointer and incremented
by 4 to represent the address of the area to be transferred.

(7) This example is identical with example (4), except that in this case addresses are
indicated numerically.

(8) Address &ADDR is assigned value H’FC, and address &ADDR+1 is assigned value
H’12; 2 bytes are assigned as a word (applies to length 2 only).

(9) Address H’AB0:H’CD is assigned value H’12, address H’AB0:H’CD+1 is assigned
value H’34, and address AB0:CD+2 is assigned value H’56. Hence, transmission is
byte-by-byte.
 A31003-H3100-S106-06-7620, 06/2018
40 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

VIEW Command (Output of Object Information)
3.41 VIEW Command (Output of Object Information)

The VIEW command is used to list information on objects and catalogs.

The number of objects involved can be limited to objects belonging to a specified
object (e.g. all tasks that belong to a job).

Examples:

VIEW MODCATI 5640:1300;

VIEW MAILBOX #4890:1302;

VIEW SEGMENT 2458:143;

VIEW TASK J*;

VIEW JOB;

3.42 INSP Command (Output of JOB and TASK Information)

The INSP command is used to obtain comprehensive information about an
object. There is a simplified syntax for the user’s own task and job. Otherwise the
object’s token must be specified. This can be done directly (with #) or indirectly
by specifying an address where the token may be found. Then the object type and
the specific data for this object are output. 
The following objects are possible: JOB, TASK, MAILBOX, POOL, BUFFER,
SEGMENT, QUEUE, REGION and SEMAPHORE.

Examples:

(10
)

At address FE0:C, value H’90 is entered with length 9. If only one byte is provided
on the right, the length is interpreted as a repetition factor.

(11) Logging of ACT operations is deactivated.

(12
)

Port 1404 is set to 0 (watchdog is deactivated).

Objectes Catalogs

JOB MODCATI

TASK MODCATA

SEGMENT SYSCATI

SEMAPHOR SYSCATA

MAILBOX

QUEUE

POOL

REGION
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 41

Function Description of DEBUG Special Commands

debug3.fm

IF Command (Define Conditions)
INSP T*;

INSP J*;

INSP #1238:1300;

INSP 2458:135->+5;

3.43 IF Command (Define Conditions)

IF makes the execution of operations dependent on the conditions defined.
These conditions permit any kind of arithmetic and logic operations with DEBUG
variables, constants and memory contents (Length 1, 2 or 4). The first prompt
character (system status) is set to ’-’ within IF. IF can have seven nesting levels.
The syntax (IF, THEN, ELSE, FI) is identical with that of CHILL. Example:

Empty ELSE branches may be omitted.

Relational operators for defining conditions:

A1:AT H’1238:H’5678 DO

IF %ABC > H’AB30:H’12(2)

THEN D %B;

IF %A = &B(4)AND

 %C < %A OR

 %B = 1

THEN SET %A =2;

FI;

ELSE SET %ABC = %XYZ;

FI;

OD;

EQ equal (=)

NE not equal (/=)

GT greater than or equal (>)

GE greater than or equal oder gleich (>=)

LT less than (<)

LE less than or equal (<=)

AND and

OR or

NOT not

XOR exclusive OR
 A31003-H3100-S106-06-7620, 06/2018
42 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug3.fm

Function Description of DEBUG Special Commands

! Command (Execute Instructions)
3.44 ! Command (Execute Instructions)

When an exclamation mark is entered, all instructions which were previously only
closed with ’;’ will be executed. 
An instruction that is closed with ’!’ instead of ’;’ will be executed immediately. 
For instructions within a trigger definition or a macro definition, this instruction is
ignored. When the table storing the instructions is full, the instructions are carried
out automatically upon receipt of a corresponding message.

The number of commands that may be chained depends on the number of
operations stored. However, instructions can be input at any time. Chaining is
discontinued (i.e. instructions are carried out), when an AT or MDEF instruction
is given. Example:

or, as distinguished from the above

In the first case, the D statements are executed jointly, in the second case, they
are executed immediately after each entry.

3.45 WRITE Command (Write Comments)

WRITE can be used to write comments in the trace buffer with length 1-80, in
order to protocol entries.

Example:

WRITE ’This is a comment’;

D 18:24 (2);

.

.

D 18:36 (2);

!

D 18:24 (2)!

.

.

D 18:36 (2)!
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 43

Function Description of DEBUG Special Commands

debug3.fm

END Command (Terminate Interactive Level)
3.46 END Command (Terminate Interactive Level)

This command initiates transition to the control level. For transition to the control
level, the SAVEON status is set to SAVEOFF. This function is now only required
when a PRINT command longer than 79 characters is to be entered.
 A31003-H3100-S106-06-7620, 06/2018
44 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug4.fm

Adressing

Numerical Addressing Carried out with the Aid of DEF Symbols
4 Adressing

4.1 Numerical Addressing Carried out with the Aid of DEF Symbols

An address in the 80286 processor chip is composed of

• the selector

and

• an offset.

A numerical address can be assigned to a symbol. This symbol can be used in
all DEBUG commands, in replacement of a numerical address.

4.2 Addressing CHILL Variables

4.2.1 Basic Data Types

Basic data types comprise:

addr numerical address or DEF symbol

distance,

length,

index constant, DEBUG variable or arithmetic expression

addressed object CHILL syntax DEBUG syntax

Variable VAR addr

Pointer POI -> addr ->

Structural component STR.FIELD addr+distance

Array element ARY(INDEX) addr+index*length

Chained pointer POI -> -> -> -> addr -> -> -> ->

Field of an element of an
array of several structures

ARY(INDEX).FIELD addr+index*length +
distance

Element of an array of one
structure

STR.ARY(INDEX) addr+distance +

of a structure index * length

Table 6 Overview of basic data types
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 45

Adressing

debug4.fm

Addressing CHILL Variables
4.2.2 Combinations

Basic data types, addressed by pointers

Basic data type CHILL syntax DEBUG syntax

addr distancePOI .STR.FIELD3

F1 F2 FIELD
STR

POI

distance

Basic data type CHILL syntax DEBUG syntax

addr length*indexPOI .ADY(INDEX)4

POI

index

length

Figure 2 Basic Data Types 3 and 4 Addressed by Pointers
 A31003-H3100-S106-06-7620, 06/2018
46 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug4.fm

Adressing

Addressing CHILL Variables
Dereferencing of basic data types

Typ CHILL syntax DEBUG syntax
addr + distanceSTR.POI 3

STR

distance

ARY

length

POI

Typ CHILL syntax DEBUG syntax
addr + length * indexARY(INDEX) 4

Figure 3 Basic data types 3 and 4 dereferencing

IMPORTANT: The expression used to modify an address in DEBUG is evaluated
from right to left; a dereferencing arrow (’->’) is interpreted as a parenthesis.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 47

Adressing

debug4.fm

Addressing CHILL Variables
 A31003-H3100-S106-06-7620, 06/2018
48 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug5.fm

Special Applications

Testing with Dynamic Variables
5 Special Applications

5.1 Testing with Dynamic Variables

Dynamic data can be addressed with DEBUG statements at the trigger point. The
local variables of the procedure in which the trigger point is located, and of all
surrounding procedures as well as their parameters, can be addressed. Instead
of selector and offset, the address specifies nesting levels (from Chill compiler
listing). P* marks the current procedure, Pn (n = B to Z) the static depth, where
B is the highest level.

Example:

5.2 Testing with Processor Stop

Here, differences with the corresponding ICE statements are shown.

GOTIL has an additive effect, the previous GOTIL statements are retained as
breakpoints. They can be deleted with the REMOVE statement.

DEBUG stops before executing the statement. The address of the following
command is not available.

The processor is stopped by the fact that all tasks are suspended. The
procedures not implemented as tasks continue running. The tasks of DEBUG and
of the Miniterminal Handler (MTH) are not suspended.

5.3 Global example

Messages issued by DEBUG are not considered in this example. However, the
prompt which is used to request the next entry is shown here. The numbers serve
as references for the explanations.

PROC : AT FF0:26 DO

D P*:2(4);

SET PC:F(2) = X’ABCD;

OD;

1) + >START
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 49

Special Applications

debug5.fm

Global example
2) **>FILE : CURFILE=PROTFILE/001

3) **>DCL %COUNTER %INT;

**>DCL %DEACT %BOOL;

**>SET %COUNTER = 1;

*!>OPL : AT E320: 4C5 DO

*:> IF %COUNTER LT T’13

*-> THEN SET %COUNTER = %COUNTER + 1;

*-> ELSE DEACT OPL; SET %DEACT = TRUE;

*-> FI;

*:> OD;

*!> ACT OPL!

 <Quittungen>

**>DEF &BUFFER 4E60:H’10D0 (T’16);

*!>D &BUFFER;

4) *!>PRINT

 <Quittungen für Trace>

 <Tracebufferausgabe>

5) **>DEF &MESGEN E680:C69 (1);

*!>AAA : AT &MESGEN DO

*:> D &BUFFER;

*:> OD;

*!>ACT AAA!

 <Quittungen>

**>D &MESGEN %BIN!

 <Quittung>

**>BBB : AT F618:4EF DO

*:> DEACT AAA;

*:> OD;
 A31003-H3100-S106-06-7620, 06/2018
50 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug5.fm

Special Applications

Global example
Explanations of the above example:

*!>ACT BBB;

*!>ACT AAA!

 <Quittungen>

**>D 8820:17C4 (7) %CHAR;

*!>DEACT AAA,BBB;

*!>END

 <Quittungen>

6) * >PRINT :TLOG=ON

 <Tracebufferausgabe>

7) * >IN

**>DEF &ONE H’EBD0:H’165C (1);

*!>DEF &TWO H’EBD0:H’166B (1);

*!>DEF &THREE = &ONE + 2;

*!>SET &ONE TO &TWO = H’90;

*!>SET &THREE = T’144;

*!>D %COUNTER;

*!>D %DEACT;

 8) *!> RUN : INFILE=RUNFILE1/003

<Quittungen der Instruktionen>

<Quittungen der Runfile>

9) **>PRINT

10) **>TERM

11) + >PRINT : INFILE=PROTFILE/001

ad 1) The DEBUG session is started. Simultaneous transition to interactive level.

ad 2) The PROTFILE/001 file is assigned as a log file.

ad 3) Entry of statements:

 DEBUG variables %COUNTER with INT mode and %DEACT with %BOOL
mode are defined.
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 51

Special Applications

debug5.fm

Global example
 The OPL trigger point is defined. 
When this trigger point has been defined, %COUNTER is incremented by 1
after each run, as long as it is smaller than 13. Otherwise, the OPL trigger is
deactivated and variable %DEACT is set to TRUE.

 The OPL trigger is activated.

Symbol &BUFFER is defined with the buffer start address and length 16.

The contents of the memory defined by the DEF symbol are output.

ad 4) Printout of the trace buffer. Prior to printout, the statements that have not yet
been executed will be processed.

ad 5) Entry of statements:

 Symbol &MESGEN is defined.

 Trigger AAA is defined. The area addressed by &BUFFER is written in the
length implicitly defined by &BUFFER (1).

 Trigger AAA is activated.

 The memory area addressed by &MESGEN is read out in binary form. (length
is explicitly defined as 3)

 Trigger BBB is defined; BBB is to deactivate trigger AAA.

 Trigger AAA is activated. Should it still be active, this ACT statement will be
rejected.

 Trigger BBB is activated.

 7 bytes are output as a character string.

 AAA is reactivated.

Triggers AAA and BBB are deactivated.

ad 6) Of the trace buffer entries, only the trigger information is to be output.

ad 7) Entry of statements:

 Symbols &ONE and &TWO are defined.

 Symbol &THREE is defined in relation to &TWO (offset+2), the length of
&ONE is adopted.

The address range from &ONE to &TWO is set to hexadecimal 90 (16 bytes).

 Value 144 is written in the memory that is addressed with symbol &THREE.

 The contents of variables %COUNTER and %DEACT are output.

ad 8) Statements are read in from the command file RUNFILE1/003.

ad 9) The entire trace buffer is printed out.

ad 10) The DEBUG session is terminated.

ad 11) The entire log file is printed out.
 A31003-H3100-S106-06-7620, 06/2018
52 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug6.fm

Messages

DEBUG Message Classes
6 Messages

6.1 DEBUG Message Classes

During a DEBUG session, a number of situations arise which DEBUG must report
to the user. DEBUG groups the messages into six classes according to event
types.

Error messages: (E)

This message class is used by DEBUG to report errors detected during internal
tests, especially inconsistent table contents. Such errors can usually be corrected
by starting the DEBUG session over again (i.e. TERM and START).

Syntax messages: (S)

This message class is used to report all syntax errors during command input.

Test order messages: (T)

This message class is used by DEBUG to report all events that occur while
commands are being executed. User data is represented as binary numbers or
characters.

Test order messages: (H)

Identical with class T. Hexadecimal notation of user data.

Information messages: (N)

This class comprises the message numbers which are not assigned long texts.

Information messages: (I)

This class comprises all remaining messages (information).
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 53

Messages

debug6.fm

DEBUG Message Format
DEBUG messages can, in general, be written in the trace buffer and/or output to
the terminal. The following table shows where messages will be transmitted to.
For classes E and I there may be occasional variations.

Output to terminal: instructions only (no operations).

Output of instructions to the trace buffer is controlled by the standard DEF symbol
&WRITE_IN (see function DEF).

Output of operations to the trace buffer is controlled by several standard DEF
symbols (see function DEF).

6.2 DEBUG Message Format

A DEBUG message comprises a fixed and a variable component. The variable
component is omitted in a number of messages. The fixed message component
is omitted only in D and SET with order identifiers #FFFF, and in WRITE. The
fixed variable components of a message are output on separate lines.

6.3 Fixed Message Component Format

Header Command Text field

5585

:

11

Figure 4 Fixed Message Component

Header format

The message header can be considered a message abbreviation.

Message class Output to trace
buffer

Output to DEBUG terminal

Error (E) yes yes

Syntax (S) no yes

Test order (T) yes no

Test order (H) yes no

Information (I) no yes

Table 7 Message Classes
 A31003-H3100-S106-06-7620, 06/2018
54 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug6.fm

Messages

Fixed Message Component Format
Complex Message number Message class

2 2 1

Figure 5 Message Header

Explanation:

Complex

The complex serves for localizing the DEBUG complex that initiates the
message and for expanding the message number range.

Possible values:

00 syntax analyzer

01 syntax analyzer

03 command analyzer

04 special commands

05 interpreter

06 execution routines

08 system object inspection

Message number

The message number, a unique number between 1 and 99, is assigned
for each complex.

Message classes

The following message classes exist:

E Error message (software error)

S Syntax message

T Test order message

I Information message

N Message text not available

H As for class T , if hexadecimal notation

Command

In some messages the command keyword is repeated.

Text field
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 55

Messages

debug6.fm

Fixed Message Component Format
Explanatory message text. This text is always issued in addition to the
message.This service manual lists all the messages including the text
field. No additional explanations are given.

Additional Information (variable part of the message) see the chapter on setup of the
additional information level.
 A31003-H3100-S106-06-7620, 06/2018
56 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug7.fm

Syntax Error

Syntax Error Handling with Special Commands
7 Syntax Error

7.1 Syntax Error Handling with Special Commands

The following tests are performed:

• A check is made to see whether the command exists and is permitted at that
point in the session.

• In addition, a check is made to see whether the parameters exist, whether all
required parameters have been specified and whether the parameter values
are within limits.

In the event of an error, a message is output. However, the parameter in which
the error was made is not indicated.

7.2 Syntax Error Handling for Normal Commands

Syntax error handling is based on the following principle: to facilitate correction of
faulty input, a line-oriented, instruction-related syntax check is carried out. This
method prevents an input of linked instructions from having to be re-entered in
full.

From the user’s point of view, the error handling procedure is as follows:

Having entered one line, the user receives a message telling him whether or not
this line was correct. If it was, the prompt, e.g. ’**>’, will appear. If an error is
reported, the user only needs to re-enter his command from the faulty instruction
onwards.

Example:

In the last line, an error is reported to the user. In this example, the user must
enter his correction as follows:

D 1238:H’745(4);SET %B=1;OD;

**> LABEL:AT &MARKE DO

*:> D %COUNTER;IF %B = %C THEN D %X;FI;D

*:> 1238:J’745(4); SET %B=1; OD;

0062S :ILLEGAL CHARACTER

1238:

*:>
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 57

Syntax Error

debug7.fm

Syntax Error Handling in Runfiles
Note: Commands ’AT’ and ’IF’ are exceptional, since these commands may
contain one or several other instructions. Besides, commends ’THEN’ and ’ELSE’
may in their turn contain further instructions. For syntax testing, such nested
instructions are converted into a succession of linear instructions.

Example: the AT statement

’LIN: AT xy DO D z;D v;OD;’

is composed of 4 statements:

’LIN: AT xy DO’,
’D z;’, 
’D v;’ and 
’OD;’.

Thus, the syntax error handling principle is applied to each of the commands
seperately.

7.3 Syntax Error Handling in Runfiles

Statements in a runfile are checked exactly as with interactive input. The first
wrong line will terminate the read-in of a command file. The user is told which kind
of error occurred in which line.

As opposed to error handling in dialog mode, the instructions cannot be corrected
immediately. Wrong nested instructions are terminated by DEBUG itself with the
necessary number of ’FI’ and ’OD’. The commands are not logged at the terminal.

In order to avoid interupts due to errors in a runfile, parameter FUNC=CHECK
can be declared in for the RUN command. This parameter must only be declared
if the user is certain that the file contains no errors which are likely to start the
DEBUG off on an undesired sub-procedure. For instance, if the trigger point
definition is wrong, the insstructions for this trigger are no longer interpreted as
operations but considered instructions and executed immediately.
 A31003-H3100-S106-06-7620, 06/2018
58 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug8.fm

Syntax in BNF
8 Syntax in BNF

The following list shows the meanings of the used symbols, which are similar to
the BNF (Bacchus-Naur-Form):

The syntax:

--first the command level (highest level)

Let @ be the empty symbol,

A a non-terminal,

X,Y,Z concatenations of terminals, non-terminals and some symbols
(explained next).

A ::= X is a production (rewriting rule) for the non-terminal A. It defines
the way in which A is built up from other terminals and/or non-
terminals.

"a" a is a terminal.

X | Y means the alternate choice between X and Y. 
A ::= X | Y is short for
A ::= X oder A ::= Y .

() many contain a set of symbols or may be used for reasons of
clarity.

i.e. (X | Y) Z s short for X Z | Y Z .

[X] is defined as @ | X .

{X} is defined as @ | X | X X | X X X | ...

and

--comment for comments.

AMO_debug_cmd ::= """ debug_cmd """ [;]

debug_cmd ::= (| act_cmd -- instruction/operation

| at_cmd -- instruction

| break_cmd -- instruction/operation

| cont_cmd -- instruction

| dcl_cmd -- instruction

| deact_cmd -- instruction/operation

| def_cmd -- instruction

| dend_cmd -- special command

| display_cmd -- instruction/operation

| dowhile_cmd -- instruction/operation

| end_cmd -- instruction
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 59

Syntax in BNF

debug8.fm
| exec_cmd -- instruction/operation

| file_cmd -- special command

| go_cmd -- instruction

| gofor_cmd -- instruction

| gotil_cmd -- instruction

| if_cmd -- instruction/operation

| in_cmd -- special command

| insp_cmd -- instruction/operation

| list_cmd -- special command

| logoff_cmd -- instruction/operation

| logon_cmd -- instruction/operation

| mcall_cmd -- instruction/operation

| mdef_cmd -- instruction

| print_cmd -- special command

| redcl_cmd -- instruction

| redef_cmd -- instruction

| remat_cmd -- instruction

| remmac_cmd -- instruction

| remove_cmd -- instruction

| reset_cmd -- special command

| run_cmd -- special command

| runoff_cmd -- instruction

| runon_cmd -- instruction

| saveoff_cmd -- special command/instruction

| saveon_cmd -- special command/instruction

| sel_cmd -- special command

| set_cmd -- instruction/operation

| start_cmd -- special command

| stop_cmd -- /operation

| term_cmd -- special command

| trace_cmd -- instruction/operation

| triggoff_cmd -- special command

| triggon_cmd -- special command

| view_cmd -- instruction/operation

| write_cmd -- instruction/operation

) (";" | "!")

| (";" | "!")

-- max. 1 special command and

-- max. 160 characters per line,,
 A31003-H3100-S106-06-7620, 06/2018
60 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug8.fm

Syntax in BNF
-- on special commandsd ";" and "!" are optional

-- saveoff_cmd and saveon_cmd are allowed

-- as special command or instructionoperation

act_cmd ::= "ACT" ("ALL" | at_label {"," at_label})

at_cmd ::= at_label ":" "AT" trigger

"DO" {debug_cmd} -- operation

"OD"

break_cmd ::= "BREAK"

cont_cmd ::= "CONT" ("ALL" | at_label {"," at_label})

-- max. 6 Labels

dcl_cmd ::= "DCL" (debug_var | "(" debug_var {"," debug_var} ")")

debug_mode

{"," (debug_var | "(" debug_var {"," debug_var} ")")

debug_mode

deact_cmd ::= "DEACT" ("ALL" | at_label {"," at_label})

def_cmd ::= "DEF"

 def_symbol

(num_addr_abs length

 | "=" def_symbol [("+" | "-") offset] [length]

)

{ num_addr_abs length

 | "=" def_symbol [("+" | "-") offset] [length]

}

dend_cmd ::= "DEND"

display_cmd ::= ("D" | "DISPLAY" | "TRACE")

display_def {"," display_def}

display_def ::= (display_item

 | "(" display_item {"," display_item} ")"

) [disp_pict] ["#" number]

display_item ::= num_addr_rng

| symb_addr_rng

| "%STACK" length

| "#R"

| debug_var

| io_port

dowhile_cmd ::= "DOWHILE" condition ";"

(debug_cmd) -- operation

"OD" {debug_cmd} -- operation

end_cmd ::= "END"
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 61

Syntax in BNF

debug8.fm
exec_cmd ::= "EXEC" name

file_cmd ::= "FILE" ":"

("CURFILE" "=" filename ["," SUCFILE" "=" filename]

 | "SUCFILE" "=" filename

 | "CUR" "=" "CLOSE"

[["SUC" "=" "CLOSE"] | "," "SUCFILE" "=" filename]

 | "SUC" "=" "CLOSE" ["," CURFILE" "=" filename]

)

go_cmd ::= "GO"

gofor_cmd ::= "GOFOR"

gotil_cmd ::= "GOTIL" trigger {"," trigger}

if_cmd ::= "IF" condition

 "THEN" (debug_cmd) {debug_cmd} -- operations

 ["ELSE" (debug_cmd) {debug_cmd}] -- operations

"FI"

in_cmd ::= "IN" [":" "RUNFILE" "=" filename]

insp_cmd ::= "INSP" ("T*" | token_id)

list_cmd ::= "LIST" ":" "TAB" "=" ("AT"

 | "DCL"

 | "DEF"

 | "DEFN"

 | "DEFS"

 | "MAC"

 | "STOP"

)

logoff_cmd ::= "LOGOFF"

logon_cmd ::= "LOGON"

mcall_cmd ::= "MCALL" macname

mdef_cmd ::= "MDEF" macname ";" {debug_cmd}
"MEND"

-- operation

print_cmd ::= "PRINT" [":" print_param]

redcl_cmd ::= "REDCL" debug_var debug_mode

redef_cmd ::= "REDEF" -- DEF symbol already defined

def_symbol

(num_addr_abs [length]

 | "=" def_symbol [("+" | "-") offset] [length]

)

remat_cmd ::= "REMAT" ("ALL" | at_label {"," at_label})

remmac_cmd ::= "REMMAC" macname
 A31003-H3100-S106-06-7620, 06/2018
62 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug8.fm

Syntax in BNF
remove_cmd ::= "REMOVE" trigger {"," trigger}

reset_cmd ::= "RESET"

run_cmd ::= "RUN" ":" "INFILE" "=" filename

["," "PROT" "=" "NO"]

["," "FUNC" "=" "CHECK"]

-- ["," "FUNC" "=" "CHECK"] not in DASIST

runoff_cmd ::= "RUNOFF"

runon_cmd ::= "RUNON"

saveoff_cmd ::= "SAVEOFF"

saveon_cmd ::= "SAVEON"

sel_cmd ::= "SEL" [":" print_param]

set_cmd ::= "SET" (debug_var

 | num_addr_rng

 | io_port

 | symb_addr_rng

)

"=" (arith_expr

 | bool_expr -- no with
io_port

 | bool_const -- no with
io_port

 | "’" char "’" -- no with
io_port

 | hex_string

 | num_addr

 | symb_addr

 | token

 | local_proc

)

["#" number]

hex_string ::= "X’" hex_digit hex_digit {["_"] hex_digit hex_digit}

start_cmd ::= "START"

stop_cmd ::= "STOP"

term_cmd ::= "TERM"

trace_cmd ::= display_cmd

triggoff_cmd ::= "TRIGGOFF"

triggon_cmd ::= "TRIGGON"

view_cmd ::= "VIEW" view_object

view_object ::= ("JOB" | "TASK" | "MAILBOX" | "SEMAPHOR"
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 63

Syntax in BNF

debug8.fm
-- the next level contains symbols used more than once --

 | "QUEUE" | "SEGMENT" | "REGION" | "POOL"

) [token_id]

| "MODCATA" [token_id | catname | "T*"]

 | "SYSCATA" [token_id | catname]

 | "MODCATI" [token_id | index | "T*"]

 | "SYSCATI" [token_id | index]

catname ::= string -- max. 7 characters

index ::= number

write_cmd ::= string -- 1 to 80 characters

at_label ::= name -- max. 8 alphanumeric characters

condition ::= general_cond | pointer_cond

general_cond ::= bool_expr {("AND" | "OR" | "XOR") bool_expr}

bool_expr ::= ["NOT"]

(factor rel factor

 | bool_var

 | condition

 | "[" bool_expr "]"

)

factor ::= arith_expr | num_addr_rng | symb_addr

io_port ::= "#P" hex_number

pointer_cond ::= pointer_rel {("AND" | "OR" | "XOR") pointer_rel}

pointer_rel ::= pointer_var rel (pointer_var

 | symb_addr_rng

 | num_addr_rng

 | "#" num_addr_abs

pointer_var ::= "%" name

print_param ::= [["INFILE" "=" filename] ["," "INF" "=" "CUE"]

| "REC" "=" dec_digit {dec_digit}

["," "TEC" "=" dec_digit {dec_digit}]

]

["," "LABEL" "=" label] ["," "TLOG" "=" "ON"]

["," "TIMEB" "=" time] ["," "TIMEE" "=" time]

["," "DATEB" "=" date] ["," "DATEE" "=" date]

["," "PERIOD" "=" "DAILY"]

-- "," missed if this parameter first

label ::= "*" | letter {letter | dec_digit} ["*"]
 A31003-H3100-S106-06-7620, 06/2018
64 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug8.fm

Syntax in BNF
-- the auxiliary level (symbols used in previous levels)

-- the lowest level basic symbols, which are used frequently

-- max. 8 characters

time ::= hour ":" minute ":" second

hour ::= 00 | 01 | ... | 23

minute ::= second

second ::= 00 | 01 | ... | 59

date ::= day "/" month "/" year

day ::= 00 | 01 | ... | 31

month ::= 01 | 02 | ... | 12

year ::= 00 | 01 | ... | 99

token_id ::= "J*"

| def_symbol

| num_addr

| num_addr_proc

| token

token ::= "#" seg_addr [":" offset]

trigger ::= (def_symbol | num_addr_abs) [("+" | "-") offset]

num_addr ::= num_addr_abs [addr_mode]

num_addr_rng ::= num_addr_abs ("TO" num_addr_abs | [addr_mode]
length)

| num_addr_proc length

num_addr_abs ::= seg_addr ":" offset

num_addr_proc ::= local_proc ":" ["-"] offset [addr_mode]

string ::= "’" char { char} "’"

-- ’ in string duplicate

symb_addr ::= def_symbol [addr_mode]

symb_addr_rng ::= def_symbol ["TO" def_symbol | [addr_mode] length]

addr_mode ::= ("->" [("+" | "-") arith_expr] | ("+" | "-") arith_expr)

{"->" [("+" | "-") arith_expr]}

arith_expr ::= operand {("+" | "-" | "*" | "/") operand}

operand ::= number

| debug_var

| arith_expr

| "[" arith_expr "]"
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 65

Syntax in BNF

debug8.fm
-- Names ...

-- Numbers ...

-- Printable characters ...

bool_var ::= name

debug_var ::= "%" name

def_symbol ::= "&" name

filename ::= name -- first character must be alphabetic

-- max. 27 alphanumeric characters

macname ::= name -- max. 8 alphanumeric characters

name ::= letter {letter | dec_digit | "_" | "."}

length ::= "(" (number | register) ")"

if used in condition, only 1, 2 or 4 bytes allowed

number ::= bin_number | dec_number | hex_number

bin_number ::= "B’" ("0" | "1") {["_"] ("0" | "1")}

dec_number ::= "T’" dec_digit {["_"] dec_digit}

hex_number ::= (["H’"] hex_digit | dec_digit) {["_"] hex_digit}

hex_digit ::= dec_digit | "A" | "B" | "C" | "D" | "E" | "F"

offset ::= number | register

seg_addr ::= number | register

bool_const ::= "TRUE" | "FALSE"

char ::= letter | dec_digit

| "," | "." | "/" | "<" | ">" | "?" | "+" | ":" | "*"

| "]" | "}" | "@" | "[" | "{" | "#" | "|" | "%" | " "

| "&" | "’" | "(" | ")" | "_" | "=" | "-" | " " | "—"

| "|" | "\" | "!" | ";"

debug_mode ::= "%" ("CHAR"| "INT" | "BOOL" | "POI" | "BYT")

dec_digit ::= "0" | "1" | "2" | "3" | "4" | "5"

| "6" | "7" | "8" | "9"

disp_pict ::= "%" ("CHAR"| "BIN" | "HEX" | "DMP" | "SYMB" | "ASM")

-- "SYMB" and "ASM" only in DASIST

letter ::= "A" | ... | "Z" | "a" | ... | "z"

local_proc ::= "P*" | "PB" | "PC" | "PD" | ... | "PZ"

register ::= "CS" | "IP" | "AX" | "BX" | "CX" | "DX" | "ES"

| "SS" | "SP" | "BP" | "DI" | "SI" | "DS" | "FL"

rel ::= "EQ" | "NE" | "GT" | "GE" | "LE" | "LT"

"=" | "/=" | ">" | ">=" | "<=" | "<"
 A31003-H3100-S106-06-7620, 06/2018
66 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug9.fm

User Information

General
9 User Information

9.1 General

Wherever there is at least one BLANK (’ ’), it may be replaced by any number of
BLANKs and/or comments. A comment can take up any number of lines and is
delimited by ’/*....

9.2 Generation Limit Values

The maximum values that apply when entering commands with DEBUG are listed
below. The values can be changed only by re-writing the translating program.

Meaning Value

Number of triggers 170

Number of macros 34

Number of standard DEF symbols 12

Number of definable DEF symbols 244

Number of DEBUG variables 100

Number of operations (sum total) 750

Number of operation expressions 510

Number of linkable instructions 34

Number of instruction expressions 68

Length of DEBUG variable names 26

Length of DEF symbol names 26

Length of trigger names 8

Length of macro names 8

Length of file names 32

Size of trace buffer (bytes) 17000

Size of log file 10000

Number of instruction characters 260

Number of operation characters 1000

Hexadecimals in instructions 400

Hexadecimals in operations 1700

Table 8 Generation Values
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 67

User Information

debug9.fm

Generation Limit Values
 A31003-H3100-S106-06-7620, 06/2018
68 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
10 List of DEBUG Messages

All of the messages listed are messages addressed to the user. They are
arranged according to complexes and message numbers.

The auxiliary data is described in the next section, sorted according to message
numbers.

All messages numbered 00xxS and 01xxS include, as additional information, the
last input line up to the faulty character string.

The text is shown in German with the English version below. Messages are output
in one language only.

/***** COMPLEX : SYNTAX ANALYZER (00/01) *****/

0001S :FALSCHER BEGINN EINER ANWEISUNG

 :ILLEGAL BEGINNING OF INSTRUCTION

0002S :"AT" FEHLT

 :"AT" MISSING

0003S :":" FEHLT

 :":" MISSING

0004S :TESTPUNKTNAME WURDE ERWARTET

 :TESTORDERLABEL EXPECTED

0005S :DEF-SYMBOL FALSCH ODER FEHLT

 :MISSING OR ILLEGAL DEF-SYMBOL

0006S :ENDADRESSE NICHT WIE ANFANGSADRESSE NUMERISCH

 :ENDADDRESS NOT NUMERICAL LIKE STARTADDRESS

0007S :SELEKTOR:OFFSET MUSS INTEGER SEIN

 :SELECTOR:OFFSET MUST BE INTEGER

0008S :ENDADRESSE KLEINER ALS ANFANGSADRESSE

 :ENDADDRESS LOWER THAN STARTADDRESS

0009S :DEF-SYMBOL TABELLE VOLL
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 69

List of DEBUG Messages

debug10.fm
 :NO MORE DEF-SYMBOL ACCEPTED

0010S :DEF-SYMBOL IST SCHON DEFINIERT

 :DEF-SYMBOL ALREADY DEFINED

0011S :WARNUNG: ES WERDEN NUR 6 VARIABLE BERUECKSICHTIGT

 :WARNING: ONLY 6 VARIABLES ACCEPTED

0012S :ADRESSE UNGUELTIG

 :ADDRESS INVALID

0013S :ADRESSMODIFIKATION NICHT ERLAUBT

 :ADDRESS MODIFICATION NOT ALLOWED

0014S :"," ODER ";" oder "!" WURDE ERWARTET

 : "," OR ";" OR "!" EXPECTED

0015S :LAENGE FEHLT ODER UNZULAESSIGE MODIFIKATION

 :LENGTH MISSING OR WRONG MODIFICATION

0016S :NUR INNERHALB AT BZW MDEF ZUGELASSEN

 :ONLY ADMITTED WITHIN AT- OR MDEF-INSTRUCTIONS

0017S :RECHTE KLAMMER FEHLT

 :RIGHT PARENTHESIS MISSING

0018S :"FI" WURDE ERWARTET

 : "FI" EXPECTED

0019I :KEINE OPERATION MEHR MOEGLICH, AT BZW MDEF
AUSGEFUEHRT

 :NO MORE OPERATION POSSIBLE, AT OR MDEF ACCEPTED

0020S :SELEKTOR HAT UNGUELTIGEN WERT

 :SELECTOR INVALID

0021S :DCL IGNORIERT, MAXIMUM AN VARIABLEN ERREICHT

 :NO MORE DEBUG VARIABLES POSSIBLE
 A31003-H3100-S106-06-7620, 06/2018
70 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0022S :TESTPUNKT AKTIV ODER BELEGT, REMAT/REMOVE IGNORIERT

 :TESTORDER ACTIVE OR IN EXECUTION, REMAT/REMOVE
REJECTED

0023S :DEBUG VARIABLE FALSCH ODER FEHLT

 :MISSING OR ILLEGAL DEBUG VARIABLE

0024S :DEBUG VARIABLE IST SCHON DEFINIERT

 :DEBUG VARIABLE ALREADY DECLARED

0025S :"," FEHLT

 :"," MISSING

0026S :ADRESSMODIFIKATION KEIN ARITHMETISCHER AUSDRUCK

 :ADDRESSMODIFICATION MUST BE AN ARITHMETIC EXPRESSION

0027S :ZU VIELE OPERANDEN

 :TOO MANY OPERANDS

0028S :UNVERTRAEGLICHE OPERANDEN

 :INCOMPATIBLEOPERANDS

0029S :DEBUG VARIABLE IST NICHT DEFINIERT

 :DEBUG VARIABLE NOT DECLARED

0030S :ALS LAENGE HIER NUR 1,2 ODER 4 ERLAUBT

 :ONLY LENGTH OF 1,2 OR 4 BYTES ALLOWED

0031S :BITTE ";" ODER "!" ODER SETAUFTRAGSKENNZEICHEN EINGEBEN

:PLEASE ENTER ";" OR "!" OR THE SET-ORDERNUMBER

0032S :OPERATION FALSCH ODER FEHLT

 :ILLEGAL OR MISSING OPERATION

0033S :TESTPUNKTNAME EXISITIERT BEREITS

 :TESTORDER ALREADY EXISTS

0034S :"DO" FEHLT ODER UNZULAESSIGE MODIFIKATION

 :"DO" MISSING OR ILLEGAL MODIFICATION
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 71

List of DEBUG Messages

debug10.fm
0035S :TESTPUNKTNAME FALSCH ODER FEHLT

 :WRONG OR MISSING LABEL

0036S :TESTPUNKTNAME EXISTIERT NICHT

 :LABEL DOES NOT EXIST

0037S :REMAT NUR NACH "!" ZUGELASSEN

 :REMAT ONLY ALLOWED IF ALL INSTRUCTIONS EXECUTED

0038S :UNZULAESSIGER LAENGENWERT

 :ILLEGAL LENGTH VALUE

0039S :DEF-SYMBOL IST NICHT DEFINIERT

 :DEF-SYMBOL NOT DEFINED

0040S :ANGABE %HEX,%BIN,%CHAR FALSCH ODER UNZULAESSIG

 :DISPLAY PICTURE %HEX,%BIN,%CHAR WRONG OR ILLEGAL

0041S :WARNUNG: NUR 12 DISPLAYS ANGENOMMEN

 :WARNING : ONLY 12 DISPLAYS ACCEPTED

0042S :OBJEKT NAME ZU LANG

 :OBJECT NAME TOO LONG

0043S :ZU VIELE OPERATOREN

 :TOO MANY OPERATORS

0044S :"THEN" FEHLT

 :"THEN" MISSING

0045S :ZU GROSSE SCHACHTELUNGTIEFE

 :MAXIMAL NESTING EXCEEDED

0046S :OPERATION WIRD ERWARTET

 :OPERATION KEYWORD EXPECTED

0047S :DEBUG MODE FALSCH ODER FEHLT

 :MISSING OR ILLEGAL DEBUG MODE
 A31003-H3100-S106-06-7620, 06/2018
72 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0048S :OPERANDEN HABEN UNZULAESSIGEN MODE

 :ILLEGAL MODE OF OPERANDS

0049S :NAME DER ANSCHLUSSROUTINE FALSCH ODER FEHLT

 :WRONG OR MISSING NAME OF ADDITIONAL ROUTINE

0050S :ZUVIELE OPERATIONEN, AT BZW MDEF WIRD IGNORIERT

 :NO MORE OPERATION POSSIBLE, AT OR MDEF IGNORED

0051S :SCHLUESSELWORT FALSCH

 :ILLEGAL INSTRUCTION KEYWORD

0052S :ZUVIELE NICHT AUSGEFUEHRTE ANWEISUNGEN

 :NO MORE INSTRUCTION POSSIBLE, PLEASE ENTER "!"

0053S :TESTPUNKTTABELLE VOLL

 :NO MORE TESTORDER DEFINITION POSSIBLE

0054S :OPERANDEN FEHLEN

 :OPERANDS MISSING

0055S :EXPRESSIONTABELLE VOLL

 :NO MORE EXPRESSION POSSIBLE

0056I :INSTRUKTIONEN WERDEN AUSGEFUEHRT, SPEICHER IST VOLL

 :INSTRUCTIONS WILL BE EXECUTED, NO MORE ROOM AVAILABLE

0057S :TESTPUNKT AN DATENADRESSE NICHT ERLAUBT

 :TRIGGER ON DATA ADDRESS NOT ALLOWED

0058S :LAENGENANGABE NICHT NUMERISCH

 :LENGTH NOT NUMERICAL

0060S :UNVERTRAEGLICHE ADRESSANGABE

 :IN COMPATIBLE ADDRESSES

0061I :RUNON IGNORIERT: ES IST KEINE DATEI ZUGEWIESEN

:RUNON IGNORED: NO FILE ASSIGNED
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 73

List of DEBUG Messages

debug10.fm
0062S :UNZULAESSIGES ZEICHEN

 :UNEXPECTED CHARACTER

0063S :ANWEISUNG IM BREAKMODUS NICHT ERLAUBT

 :INSTRUCTION NOT ALLOWED IN BREAKMODUS

0064S :ZEICHENFOLGE ZU LANG

 :STRING TOO LONG

0065S :TESTPUNKTNAME ZU LANG

 :LABEL NAME TOO LONG

0066E :TESTPUNKTTABELLE ZERSTOERT

 :TESTORDER TABLE DESTROYED

0067S :WERT ZU GROSS

 :NUMBER TOO LARGE

0068S :SCHLUESSELWORT ZU LANG

 :IDENTIFIER TOO LONG

0069S :TESTPUNKTADRESSE FEHLT

 :MISSING OR ILLEGAL TRIGGER

0070S :MINDESTENS EIN ZEICHEN NOTWENDIG

 :AT LEAST ONE CHARACTER NECESSARY

0071S :FEHLER IN EXPRESSION

 :ERROR IN EXPRESSION

0072S :SET-OPERAND FEHLT ODER FALSCH

 :SET-OPERANDS MISSING OR WRONG

0073S :"=" FEHLT

 :"=" MISSING

0074S :TRACEABLE ITEM FALSCH ODER FEHLT

 :TRACEABLE ITEM MISSING OR ILLEGAL
 A31003-H3100-S106-06-7620, 06/2018
74 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0075S :KEINE STRINGEINGABEN MEHR MOEGLICH

 :NO MORE CHARACTER OR HEXADECIMAL STRING POSSIBLE

0076S :ADRESSBEREICHSANGABE BEI LOKALEN DATEN NICHT ERLAUBT

 :ADDRESS RANGE NOT ALLOWED FOR LOCAL ADDRESSES

0077S :MODIFIKATION NUR DURCH DIREKTE WERTANGABE

 :MODIFICATION ONLY BY VALUE POSSIBLE

0078S :CHARAKTERSTRING FEHLT

 :CHARACTER STRING MISSING

0079S :INDEX ZU GROSS

 :INDEX TOO LARGE

0080S :INDEX NICHT ERLAUBT

 :INDEX NOT ALLOWED

0081S :EIGENE TASK NICHT ERLAUBT

 :OWN TASK NOT ALLOWED

0082S :OBJECT ODER KATALOG FEHLT ODER FALSCH

 :OBJECT OR CATALOG MISSING OR WRONG

0083S :TOKEN MUSS INTEGER SEIN

 :TOKEN MUST BE INTEGER

0084S :OBJECT NAME NUR FUER NAMENKATALOG

 :OBJECT NAME ONLY FOR NAME CATALOG

0085S :OBJECT TOKEN FEHLT ODER FALSCH

 :OBJECT TOKEN MISSING OR WRONG

0086S :PROCEDUREBENE "A" NICHT ERLAUBT

 :PROCEDURE LEVEL "A" NOT ALLOWED

0087S :FALSCHE LAENGENWERTE

 :INCOMPATIBLE LENGTH VALUES
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 75

List of DEBUG Messages

debug10.fm
0088S :TRIGGERADRESSEN DUERFEN NICHT DEREFERENZIERT
WERDEN

 :DEREFERENCING OF TRIGGERS NOT ALLOWED

0089S :DEBUG VARIABLE ODER DEBUG MODE FALSCH

 :WRONG DEBUG VARIABLE OR WRONG DEBUG MODE

0090E :MAKROTABELLE ZERSTOERT

 :MACRO TABLE DESTROYED

0091S :MAKRONAME ZU LANG

 :MACRO NAME IS TOO LONG

0092S :MAKRONAME EXISTIERT BEREITS

 :MACRO NAME ALREADY EXISTS

0093S :MAKRONAME EXISTIERT NICHT

 :MACRO NAME NOT FOUND

0094S :KEINE WEITEREN MAKRODEFINITIONEN MOEGLICH

:NO MORE MACRO DEFINITION POSSIBLE

0095S :NUR ZUM BEENDEN EINER MAKRODEFINITION ERLAUBT

 :ONLY ADMITTED TO CLOSE A MACRO DEFINITON

0096S :MAKRONAME FALSCH ODER FEHLT

 :MACRO NAME MISSING OR ILLEGAL

0097S :REGISTERNAMEN NUR ERLAUBT WENN BREAKPUNKT ERREICHT
IST

 :REGISTERNAME ONLY ALLOWED IF BREAKPOINT REACHED

0098S :ES SIND ZU VIELE ADRESSEN ANGEGEBEN

 :TOO MANY ADDRESSES

0099I :MAKRO BEREITS GELOESCHT

 :MACRO ALREADY REMOVED
 A31003-H3100-S106-06-7620, 06/2018
76 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0101S :DEREFERENZIEREN NICHT ERLAUBT

 :DEREFERENCING NOT ALLOWED

0102S :NUR ZUM BEENDEN VON AT BZW DOWHILE

 :ONLY ADMITTED TO CLOSE AN AT OR DOWHILE STATEMENT

0103S :ADRESSE ODER "=" FALSCH ODER FEHLT

 :ADDRESS OR "=" MISSING OR WRONG

0104I :TESTPUNKT BEREITS GELOESCHT

 :TESTORDER ALREADY REMOVED

0105S :APOSTROPH FEHLT

 :APOSTROPHE MISSING

0106S :NEGATIVER OFFSET

 :NEGATIVE OFFSET

0107S :FALSCHE EINGABE BEI POINTER VARIABLEN

 :WRONG INPUT FOR POINTER VARIABLES

0108S :ZUM LOESCHEN VON TESTPUNKTEN BITTE REMAT BENUTZEN

 :PLEASE USE REMAT TO DELETE TESTPOINTS

0109S :ZUM LOESCHEN VON BREAKPUNKTEN BITTE REMOVE
BENUTZEN

 :PLEASE USE REMOVE TO DELETE BREAKPOINTS

0110S :REMAT IGNORIERT FUER AKTIVE UND LAUFENDE TESTPUNKTE

 :REMAT IGNORED FOR ACTIVE OR RUNNING TESTPOINTS

/***** COMPLEX : COMMAND ANALYZER (03) *****/

0301S :UNGUELTIGES ZEICHEN IM STEUERKOMMANDO

 :SPECIAL COMMAND : UNEXPECTED SIGN

0302S :KOMMANDONAME ZU LANG ODER ":" FEHLT

 :COMMAND NAME TOO LONG OR ’:’ MISSING
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 77

List of DEBUG Messages

debug10.fm
0303S :KOMMANDO NICHT GEFUNDEN

 :COMMAND NOT FOUND

0304I :DEBUG V4.2 KV..: GESTARTET UM :

 :DEBUG V4.2 KV..: STARTS AT:

0305S :UNGUELTIGE ZEICHEN IM PARAMETERNAMEN

 :UNEXPECTED CHARACTER IN PARAMETER NAME

0306S :PARAMETER ZU LANG ODER "=" FEHLT

 :PARAMETER TOO LONG OR ’=’ MISSING

0307S :TRIGGER-MODUS EINGESCHALTET

 :TRIGGER MODE ON

0308S :TRIGGER-MODUS AUSGESCHALTET

 :TRIGGER MODE OFF

0309S :UNGUELTIGER PARAMETERWERT

 :ILLEGAL PARAMETER VALUE

0310S :KOMMANDO ZUR ZEIT NICHT ERLAUBT

 :COMMAND NOT ADMITTED AT THE MOMENT

0312S :PARAMETER FEHLT

 :PARAMETER MISSING

0313S :UNGUELTIGER PARAMETERNAME

 :ILLEGAL PARAMETER NAME

0314S :UNGUELTIGES ZEICHEN IM PARAMETERWERT

 :UNEXPECTED SIGN IN PARAMETER VALUE

0315S :PARAMETERWERT ZU LANG ODER "," FEHLT

 :PARAMETER VALUE TOO LONG OR "," MISSING

0316S :PARAMETERWERT FEHLT

 :PARAMETER VALUE MISSING
 A31003-H3100-S106-06-7620, 06/2018
78 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0317S :TRIGGON OHNE VORHERIGES SEL (SEL WIRD GENERIERT)

 :TRIGGON WITHOUT SEL BEFORE (STANDART SEL IS GENERATED)

0319S :UNGUELTIGE GROESSE DES PARAMETERWERTS

 :PARAMETER VALUE EXCEEDS LIMITS

0321S :UNGUELTIGES ZEICHEN IM STEUERKOMMANDO

 :UNEXPECTED SIGN IN THE SPECIAL COMMAND

0322S :UNGUELTIGES SCHLUESSELWORT

 :ILLEGAL KEYWORD

0323S :NICHT ERLAUBTER PARAMETER

 :FORBIDDEN PARAMETER

0325I :DEBUG BEENDET UM:

 :DEBUG TERMINATED AT:

0326I :WARNUNG: NICHT ALLE STACKS FREI - DEBUG BEENDET UM:

 :WARNING: OCCUPIED STACKS CANCELED,DEBUG TERMINATED AT:

0327I :TRACEBUFFER ZURUECKGESETZT

 :TRACEBUFFER RESET

0328I :RESET ABGEWIESEN, DA NOCH PROTOKOLLIERT WIRD

 :RESET REJECTED, PROTOCOLLING IS STIL ACTIVE

/***** COMPLEX : SPECIAL COMMANDS (04) *****/

0401I :ANWEISUNGSDATEI GEPRUEFT

 :RUN FILE CHECKED

0402I :ERSTER FEHLER IN ZEILE:

 :FIRST ERROR DETECTED IN LINE :

0404I :OEFFNEN DER ANWEISUNGSDATEI NICHT MOEGLICH

 :OPEN OF RUNFILE NOT POSSIBLE
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 79

List of DEBUG Messages

debug10.fm
0405I :SCHLIESSEN DER ANWEISUNGSDATEI NICHT MOEGLICH

 :CLOSE OF RUNFILE NOT POSSIBLE

0406I :SELEKTION FUER TRIGGER-MODUS GESETZT

 :SELECTION FOR TRIGGER MODE SET

0407I :EINGABE IGNORIERT, AUSGABE WIRD FORTGESETZT

 :INPUT IGNORED, OUTPUT CONTINUED

0408I :TRACEBUFFER IST LEER

 :TRACE BUFFER IS EMPTY

0409E :TESTPUNKTENDE FEHLT, TESTPUNKT NICHT KOMPLETT

 :TRIGGER END MISSING, TESTORDER INCOMPLETE

0410I :ALLE ANWEISUNGEN AUSGEFUEHRT

 :ALL INSTRUCTIONS ARE EXECUTED

0412I :PRINT BZW LIST ABGEBROCHEN

 :PRINT OR LIST CANCELLED

0413I :PRINT BEENDET

 :PRINT TERMINATED

0414I :DMS FEHLER BEIM LESEN EINES SATZES

 :DMS ERROR WHEN READING NEXT RECORD

0415I :ENDE DER PROTOKOLLDATEI ERREICHT

 :END OF PROTOCOL FILE REACHED

0417I :SCHLIESSEN DER PROTOKOLLDATEI NICHT MOEGLICH

 :CLOSE OF PROTOCOL FILE NOT POSSIBLE

0418I :OEFFNEN DER PROTOKOLLDATEI NICHT MOEGLICH

 :OPEN OF PROTOCOL FILE NOT POSSIBLE

0419I :EINGABE ZURUECKGEWIESEN, DA DIALOG MIT AMO-
DEBUG LAUEFT

:INPUT REJECTED,SESSION RUNNING ON AM-TERMINAL

0420I :CUR-DATEI BEREITS ZUGEWIESEN
 A31003-H3100-S106-06-7620, 06/2018
80 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
 :CURRENT FILE ALREADY ASSIGNED

0421I :OEFFNEN DER CUR-DATEI NICHT MOEGLICH

 :OPEN OF CURFILE NOT POSSIBLE

0422I :SCHLIESSEN DER CUR-DATEI NICHT MOEGLICH

 :CLOSE OF CURFILE NOT POSSIBLE

0423I :CUR-DATEI ZUGEWIESEN

 :CURFILE ASSIGNED

0424I :SUC-DATEI BEREITS ZUGEWIESEN

 :SUCFILE ALREADY ASSIGNED

0425I :OEFFNEN DER SUC-DATEI NICHT MOEGLICH

 :OPEN OF SUCFILE NOT POSSIBLE

0426I :SCHLIESSEN DER SUC-DATEI NICHT MOEGLICH

 :CLOSE OF SUCFILE NOT POSSIBLE

0427I :SUC-DATEI ZUGEWIESEN

 :SUCFILE ASSIGNED

0428I :EINGABE ZURUECKGEWIESEN, DA DIALOG MIT MTH
LAEUFT

 :INPUT REJECTED, DIALOG WITH MTH AT THIS MOMENT

0429I :TABELLE DER GESTOPPTEN TASKS :

 :TABLE OF STOPPED TASKS:

0431I :SPEICHERGERAET NICHT VORHANDEN

 :STORAGE DEVICE NOT READY

0432I :UNGUELTIGER DATEINAME

 :ILLEGAL FILENAME

0433I :KEIN SPEICHER VORHANDEN ODER UNGUELTIGER
DATEINAME

 :NO MEMORY AVAILABLE OR WRONG FILENAME

0434I :TABELLE DER DEF-SYMBOLE:
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 81

List of DEBUG Messages

debug10.fm
 :TABLE OF DEF-SYMBOLS:

0436I TAB=.... :ENDE DER TABELLE

 :END OF TABLE

0437I TAB=DCL :TABELLE DER DEBUG VARIABLEN:

:TABLE OF DEBUGVARIABLES:

0440I TAB=AT :TESTPUNKTTABELLE:

 :TESTORDER TABLE :

0444I TAB=.... :KEIN TABELLENEINTRAG

:NO ENTRY IN TABLE

0445I :LIST ABGEBROCHEN

 :LIST CANCELLED

0447I :CUR-DATEI NICHT ZUGEWIESEN

 :CURFILE NOT ASSIGNED

0448I :CUR-DATEI GESCHLOSSEN

 :CURFILE CLOSED

0449I :SUC-DATEI NICHT ZUGEWIESEN

 :SUCFILE NOT ASSIGNED

0450I :SUC-DATEI GESCHLOSSEN

 :SUCFILE CLOSED

0451I :KEIN GEFUNDENER EINTRAG

 :NO CORRESPONDING ENTRY

0454I :FEHLER WAEHREND SCHREIBEN

 :ERROR DURING WRITE

0457I TAB=MAC :MAKROTABELLE:

 :TABLE OF DEBUG MACROS:

0459I :ENDE DER MAKROTABELLE

 :END OF MACRO TABLE
 A31003-H3100-S106-06-7620, 06/2018
82 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0460I :ANZAHL DER EINTRAEGE:

 :NUMBER OF ENTRIES:

0461I :PARAMETER ODER DATEINAME NICHT GEFUNDEN

 :PARAMETER OR FILENAME NOT FOUND

0462I :SCHREIBEN IN PROTOKOLLDATEI NICHT MOEGLICH

 :WRITING INTO PROTOCOL FILE NOT POSSIBLE

0463I TAB=AT :NAME ZAEHLER ZUSTAND ART ADRESSE

:NAME COUNTER STATUS KIND ADDRESS

0464I TAB=MAC :NAME ZUSTAND

:NAME STATUS

0465I TAB=DEF :NAME ADRESSE LAENGE TYP

:NAME ADDRESS LENGTH TYP

0466I TAB=DCL :NAME MODE WERT ADRESSE

:NAME MODE VALUE ADDRESS

0467I TAB=STOP :NAME STOPZEIT ART

:NAME STOPTIME KIND

/***** COMPLEX : INTERPRETER (05) *****/

0501I :KEINE GESTOPPTE TASK AN DIESEM TESTPUNKT

 :NO TASK STOPPED AT THIS LABEL

0502I :ADRESSBEREICH ZU GROSS, DISPLAY WURDE GEKUERZT

 :ADDRESSRANGE TOO LARGE, DISPLAY WAS SHORTENED

0503I :ANGEGEBENE LOGISCHE ADRESSE EXISTIERT NICHT

 :DESIRED LOGICAL ADDRESS DOES NOT EXIST

0504I :DIVISION NICHT ERLAUBT

 :DIVISION NOT ALLOWED

0505I :GO, GOTIL, BREAK :BREAKMODUS ZUR ZEIT NICHT ERLAUBT

 :GO, GOTIL, BREAK: BREAKMODUS NOT ALLOWED AT THIS
MOMENT
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 83

List of DEBUG Messages

debug10.fm
0506I :PROZESSOR IST BEREITS ANGEHALTEN, BREAK IGNORIERT

 :PROCESSOR ALREADY STOPPED, BREAK IGNORED

0507I :BREAK IGNORIERT, NICHT IM BREAKMODUS ODER DIALOG MIT
AMO

 :BREAK IGNORED, NO BREAKMODUS OR DIALOG VIA AMO
DEBUG

/***** COMPLEX : EXECUTION ROUTINES (06) *****/

0601T :TESTPUNKT AKTIVIERT

 :TESTORDER ACTIVATED

0602T :TESTPUNKT BEREITS AKTIVIERT

 :TESTORDER ALREADY ACTIVATED

0603T :AKTIVIERUNG NICHT DURCHFUEHRBAR

 :ACTIVATION REJECTED

0604T :TESTPUNKT DEAKTIVIERT

D :TESTORDER DEACTIVATE

0605T :TESTPUNKT BEREITS DEAKTIVIERT

 :TESTORDER ALREADY DEACTIVATED

0606T :DEAKTIVIEREN ABGEWIESEN, KONFLIKT MIT AKTIVIEREN

 :DEAKTIVIVATION REJECTED, CONFLICT WITH ACTIVATION

0607T :DEAKTIVIEREN ABGEWIESEN

 :DEACTIVATION REJECTED

0608T :ANSCHLUSSROUTINE WURDE AUFGERUFEN

 :ADDITIONAL ROUTINE EXECUTED

0609E :IN DER OPERATIONTABELLE FEHLT ENDEKENNUNG

 :OD MISSING IN OPERATION TABLE

0611T :REMAP-FEHLER

 :REMAP-ERROR
 A31003-H3100-S106-06-7620, 06/2018
84 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0612T :AUSZUGEBENDER TRACEBUFFEREINTRAG WURDE
UEBERSCHRIEBEN

 :TRACEBUFFER ENTRY IS OVERWRITTEN

0613T :BEGINN DER TESTPUNKTBEHANDLUNG

 :START OF TESTORDER EXECUTION

0614T :DISPLAY AUSGEFUEHRT

 :DISPLAY EXECUTED

0616T :TESTPUNKT DEFINIERT

 :AT INSTRUCTION EXECUTED

0617T :AT NICHT AUSGEFUEHRT

 :TESTORDER NOT DEFINED

0618T :DATEI KONNTE NICHT GEOEFFNET WERDEN

 :OPEN OF FILE NOT POSSIBLE

0619T :DATEI KONNTE NICHT GESCHLOSSEN WERDEN

 :CLOSE OF FILE NOT POSSIBLE

0620T :BEIM SCHREIBEN TRAT EIN FEHLER AUF

 :ERROR DURING PUT

0621T :PROTOKOLLIERUNG ABGEBROCHEN, DA DIE DATEI VOLL IST

 :PROTOCOLLING STOPPED , PROTOCOL FILE FULL

0622T :DATENVERLUST, LETZTER SATZ EVENTUELL UNGUELTIG

 :DATA LOST, LAST ENTRY PROBABLY DESTROYED

0623T :DATENVERLUST, PROBLEM MIT TRACEBUFFER

 :DATA LOST ,PROBLEM WITH TRACEBUFFER

0624T :PROTOKOLLDATEI GEWECHSELT, ZUR ZEIT GUELTIG:

 :PROTOCOL FILE CHANGED, AT THIS TIME VALID:

0625T :KEIN SPEICHER VORHANDEN

 :NO MEMORY AVAILABLE

0626I :STOPTABELLE IST VOLL
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 85

List of DEBUG Messages

debug10.fm
 :NO FREE ENTRY IN STOPTABLE

0627T :TASK ANGEHALTEN (TESTPUNKTNAME,STOPZEIT)

:TASK STOPPED (LABEL,STOPTIME)

0628T :TASK FORTGESETZT (TESTPUNKTNAME,STOPZEIT,STARTZEIT)

 :TASK CONTINUED (LABEL,STOPTIME,CONTTIME)

0629T :INHALT DER REGISTER

 :DISPLAY REGISTER

0630T :SET AUSGEFUEHRT

 :SET EXECUTED

0632T :******** PROZESSOR ANGEHALTEN ********

 :******** PROCESSOR STOPPED ********

0634T :AN DIESER ADRESSE IST SCHON EIN ANDERER TESTPUNKT
AKTIV

 :ALREADY AN ACTIVATED TRIGGER AT THIS ADDRESS

0635T :PATCH WURDE AUSGEFUEHRT,RETURNCODE 8800 ODER 8803

 :PATCH EXECUTED WITH WARNINGS 8800 OR 8803

0636T :PATCH WURDE AUSGEFUEHRT

 :PATCH EXECUTED

0637T :PATCH WURDE NICHT AUSGEFUEHRT

 :PATCH NOT EXECUTED

0638T :MAKRO WURDE AUFGERUFEN

 :MACRO EXECUTED

0639T :MAKRO GELOESCHT, AUFRUF WURDE IGNORIERT

 :MACRO REMOVED, EXECUTION IGNORED

0640T :BREAK IGNORIERT,DA MTH/DEBUG JOB NOCH NICHT CREIERT
IST

 :BREAK IGNORED BECAUSE MTH/DEBUG JOB ARE NOT
CREATED YET
 A31003-H3100-S106-06-7620, 06/2018
86 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debug10.fm

List of DEBUG Messages
0641T :DOWHILE NACH 255 DURCHLAEUFEN ABGEBROCHENN

 :DOWHILE ABORTED AFTER THE MAXIMUM OF 255 LOOPINGS

0641T :ANWEISUNG ZUR ZEIT NICHT AUSFUEHRBAR

 :BINSTRUCTION NOT EXECUTABLE AT THEN MOMENT

/***** COMPLEX : SYSTEM OBJECTS (08) *****/

0801I :START DER JOB-DATEN

 :START OF JOB-DATA

0802I :START DER TASK-DATEN

 :START OF TASK-DATA

0809I :START DER MODCATI-DATEN

 :START OF MODCATI-DATA

0810I :START DER SYSCATI-DATEN

 :START OF SYSCATI_DATA

0811I :START DER MODCATA-DATEN

 :START OF MODCATA-DATA

0812I :START DER SYSCATA-DATEN

 :START OF SYSCATA_DATA

0813I :ENDE DER DATEN

 :END OF DATA

0814I :UNBEKANNTER OBJEKT-TYP IN OS-INSP-RUECKMELDUNG

 :UNKNOWN OBJECT-TYPE DETECTED IN OS-INSP-RESULT

0815I :RMX-TOKEN IST NICHT ERLAUBT

 :RMX-TOKEN NOT ALLOWED

0820I :JOB-DATEN

 :JOB-DATA

0821I :TASK-DATEN

 :TASK-DATA
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 87

List of DEBUG Messages

debug10.fm
0822E :MANGELNDE BETRIEBSMITTEL

 :LACK OF RESOURCES

0823I :PARAMETER FEHLER

 :PARAMETER ERROR

0824I :KEIN ENTSPRECHENDER EINTRAG GEFUNDEN

 :NO CORRESPONDING ENTRY FOUND

0825I :MAILBOX-DATEN

 :MAILBOX-DATA

0826I :POOL-DATEN

 :POOL-DATA

0827I :SEMAPHORE-DATEN

 :SEMAPHORE-DATA

0828I :BUFFER-DATEN

 :BUFFER-DATA

0829I :REGION-DATEN

 :REGION-DATA

0830I :QUEUE-DATEN

 :QUEUE-DATA
 A31003-H3100-S106-06-7620, 06/2018
88 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debugLOF.fm

List of Figures
List of Figures 0

DEBUG Commands overview 10
Basic Data Types 3 and 4 Addressed by Pointers 46
Basic data types 3 and 4 dereferencing 47
Fixed Message Component 54
Message Header 55
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 89

List of Figures

debugLOF.fm
 A31003-H3100-S106-06-7620, 06/2018
90 OpenScape 4000/HiPath 4000, Debug, Service Documentation

debugLOT.fm

List of Tables
List of Tables 0

DEBUG Commands (in Alphabetical Order) 8
Auxiliary Keywords (in Alphabetical Order) 11
First Prompt Character 14
Second Prompt Character 15
Third Prompt Character 15
Overview of basic data types 45
Message Classes 54
Generation Values 67
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 91

List of Tables

debugLOT.fm
 A31003-H3100-S106-06-7620, 06/2018
92 OpenScape 4000/HiPath 4000, Debug, Service Documentation

Index
Index

A
ACT, DEBUG command 37
Adressing, DEBUG 45
AT, DEBUG command 31

B
Bacchus-Naur-Form, BNF in DEBUG syntax 59
BNF Bacchus-Naur-Form, DEBUG syntax 59
Break mode, deactivate, DEBUG command 35
BREAK, DEBUG command 34
Breakpoint, define, DEBUG command 35
Breakpoint, delete, DEBUG command 36
BUG, addressing

- CHILL variables, combinations 46

C
Comments, write, DEBUG command 43
Conditions, define, DEBUG command 42
CONT, DEBUG command 34

D
D, DEBUG command 38
Data processor, DEBUG 7
DCL, DEBUG-Kommando 30
DEACT, DEBUG command 37
DEBUG 5

- characteristics of monoprocessor systems 18
- commands, description 19
- commands, overview 8
- dialog state 12
- generation limit values 67
- intermediary 7
- list of messages 69
- special applications 49
- sporadic messages 17
- syntax error 57
- syntax in BNF 59
- system state 13
- user information, 67
- user interface 7
-AMO interface, activate 15

DEBUG Command 43
DEBUG Special Commands 10
DEBUG variable, define, DEBUG command 30
DEBUG variable, redefine, DEBUG command 30
DEBUG, addressing

- CHILL variables 45

- CHILL variables, basic data types 45
- CHILL variables, basic data types, addressed by

pointers 46
- CHILL variables, dereferencing of basic data

types 47
- numerical and carried out with the aid of DEF

symbols 45
DEBUG, Adressing DEBUG

- Adressing 45
DEBUG, command description 19

- ACT command 37
- AT command 31
- BREAK command 34
- CONT command 34
- D command 38
- DCL command 30
- DEACT command 37
- DEF command 27
- DOWHILE command 36
- END command 44
- EXEC command 33
- FILE command 22
- GO command 34
- GOFOR command 35
- GOTIL command 35
- IF command 42
- IN command 21
- INSP command 41
- LIST command 25
- LOGOFF command 38
- LOGON command 37
- MCALL command 32
- MDEF command 32
- PRINT command 22
- REDCL command 30
- REDEF command 29
- REMAT command 31
- REMMAC command 33
- REMOVE command 36
- RESET command 20
- RUN command 21
- RUNOFF command 33
- RUNON command 33
- SAVEOFF command 20
- SAVEON command 19
- SEL command 25
- SET command 40

Index
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 93

Index
- START command 19
- STOP command 34
- TERM command 20
- TRIGGOFF command 25
- TRIGGON command 24
- VIEW command 41
- WRITE command 43

DEBUG, Command Descriptions
- Overview 8
- !-Command 43

DEBUG, Commands
- Statements 10

DEBUG, commands 8
- auxiliary keywords 11
- category 9
- entering 11
- instructions 11
- instructions, sorted alphabetical 8
- levels 9
- operations 11
- special characters 11

DEBUG, dialog state 12
- control level 12
- interactive level 12

DEBUG, Intermediary
- activate AMO DEBUG 8

DEBUG, intermediary 7
- AMO DEBUG 7
- miniterminal handler, activate 8

DEBUG, Kommando-Beschreibungen
- TRACE-Kommando 39

DEBUG, message list 69
- form 0001S to 0010S 69
- from 0011S to 0027S 70
- from 0028S to 0043S 71
- from 0044S to 0060S 72
- from 0061S to 0077S 73
- from 0078S to 0093S 75
- from 0094S to 0110S 76
- from 0301S to 0317S 77
- from 0319S to 0323S 79
- from 0325l to 0328l 79
- from 0401l to 0408l 79
- from 0409l to 0426l 80
- from 0427l to 0451l 81
- from 0454l to 0467l 82
- from 0501I to 0504I 83
- from 0505l to 0507l 83
- from 0601T to 0613T 84
- from 0614T to 0632T 85
- from 0634T to 0641T 86
- from 0801I to 0812I 87

- from 0813I to 0830I 87
DEBUG, messages

- error messages 53
- format 54
- format, explanation 55
- format, fixed component 54
- format, header 54
- information messages 53
- list 69
- message classes 53
- output, overview 54
- syntax messages 53
- test order messages 53

DEBUG, special applications 49
- testing with dynamic variables 49
- testing with processor stop 49

DEBUG, syntax error 57
- commands, handle 57
- normal commands 57
- runfiles 58
- special commands, handle 57

DEBUG, syntax in BNF 59
DEBUG, System State 13
DEBUG, system state

- control level, first prompt character 14
- dialog with the intermediary, third prompt

character 15
- interactive level, second prompt character 15
- prompting 13

DEBUG, User Interface
- Dialog 7

DEBUG, user interface 7
- calling the programm 7
- commands 8
- dialog state 12
- input 15
- prompting 13
- sporadic messages 17

Debugger 5
DEF, DEBUG command 27
Dialog state, DEBUG 12
DOWHILE, DEBUG command 36

E
END, DEBUG command 44
Error messages, DEBUG 53
EXEC, DEBUG command 33
Exit routine, start, DEBUG command 33

F
File instruction, enter, DEBUG command 21
FILE, DEBUG command 22
A31003-H3100-S106-06-7620, 06/2018
94 OpenScape 4000/HiPath 4000, Debug, Service Documentation

Index
G
Generation limit values, DEBUG 67
GO, DEBUG command 34
GOFOR, DEBUG command 35
GOTIL, DEBUG command 35

H
Hicom 3X3

- DEBUG 18

I
IF, DEBUG command 42
IN, DEBUG command 21
Information messages, DEBUG 53
INSP, DEBUG command 41
Instructions, chain, DEBUG command 43
Instructions, entering interactively, DEBUG command

21
Instructions, execute, DEBUG command 43
Interactive level, terminate, DEBUG command 44
Intermediary, DEBUG 7
Intermediary, dialog state indicated by the third prompt

character 15

J
JOB information, output, DEBUG command 41

L
LCU

- DEBUG 7
List output, DEBUG command 25
LIST, DEBUG command 25
Log file, print, DEBUG command 22
Logging, activate, DEBUG Command 33
Logging, deactivate, DEBUG command 33
LOGOFF, DEBUG command 38
LOGON, DEBUG command 37
Loop, define, DEBUG command 36

M
Macro, call, DEBUG command 32
Macro, define, DEBUG command 32
Macro, delete, DEBUG command 33
MCALL, DEBUG command 32
MDEF, DEBUG command 32
Memory contents, display, DEBUG command 38
Memory contents, modify, DEBUG command 40
Message classes, DEBUG 53
Messages, sporadic 17
MTH

- activate 17
- deactivate 17
- input 17

- sporadic messages 17

O
Object information, output, DEBUG command 41

P
Patch, activate, DEBUG command 19
Patch, deactivate, DEBUG command 20
PRINT, DEBUG command 22
Processor, continue, DEBUG command 34
Processor, stop, DEBUG command 34
Program call, DEBUG 7
Prompting, system state of DEBUG indicated 13
Prompting 13

- first prompt character 14
- second prompt character 15
- third prompt character 15

R
REDCL, DEBUG command 30
REDEF, DEBUG command 29
REMAT, DEBUG command 31
REMMAC, DEBUG command 33
REMOVE, DEBUG command 36
RESET, DEBUG command 20
RUN, DEBUG command 21
RUNOFF, DEBUG command 33
RUNON, DEBUG command 33

S
SAVEOFF, DEBUG command 20
SAVEON, DEBUG command 19
SEL, DEBUG command 25
Session, start, DEBUG command 19
Session, terminate, DEBUG command 20
SET, DEBUG command 40
Special characters, commands used in DEBUG 11
Speicherinhalt tracen, DEBUG-Kommando 39
START, DEBUG command 19
STOP, DEBUG command 34
Symbol, define, DEBUG command 27
Symbol, redefinie, DEBUG command 29
Syntax error, DEBUG 57
Syntax in BNF, DEBUG 59
Syntax messages, DEBUG 53
System state, DEBUG 13

T
Task informationen, output, DEBUG command 41
Task, continue, DEBUG command 34
Task, stop, DEBUG command 34
TERM, DEBUG command 20
Terminal
A31003-H3100-S106-06-7620, 06/2018
OpenScape 4000/HiPath 4000, Debug, Service Documentation 95

Index
- DEBUG 7
Test order 31

- activate, DEBUG command 37
- deactivate, DEBUG command 37
- define, DEBUG command 31
- delete, DEBUG command 31

Test order messages, DEBUG 53
Trace buffer, print, DEBUG command 22
Trace buffer, reset, DEBUG command 20
TRACE, DEBUG-Kommando 39
Tracebuffer controlling trace buffer logging operation,

DEBUG command 22
Trigger entry, activate, DEBUG command 37
Trigger entry, deactivate, DEBUG command 38
Trigger mode selection, DEBUG command 25
Trigger Mode, activate, DEBUG Command 24
Trigger mode, deactivate, DEBUG command 25
TRIGGOFF, DEBUG-command 25
TRIGGON, DEBUG command 24

U
User information, DEBUG 67
User interface, DEBUG 7

V
VIEW, DEBUG command 41

W
WRITE, DEBUG command 43
A31003-H3100-S106-06-7620, 06/2018
96 OpenScape 4000/HiPath 4000, Debug, Service Documentation

© 2024 Mitel Networks Corporation. All Rights Reserved. Mitel and the Mitel logo are trademark(s) of Mitel Networks Corporation. Unify and associated
marks are trademarks of Unify Software and Solutions GmbH & Co. KG. All other trademarks herein are the property of their respective owners.

mitel.com

	1 General Information on DEBUG
	2 User Interface
	2.1 Calling the Program
	2.1.1 The AMO DEBUG (AMO)
	2.1.2 The Miniterminal Handler (MTH)

	2.2 DEBUG Commands - Overview
	2.3 Entering DEBUG Commands
	2.4 Special Characters Used in the Commands
	2.5 DEBUG Dialog States
	2.6 Prompting
	2.7 Input via AMO DEBUG
	2.8 Input via Miniterminal Handler (MTH)
	2.9 Sporadic Messages
	2.10 Characteristics of Monoprocessor Systems (Hicom 3x3)

	3 Function Description of DEBUG Special Commands
	3.1 START Command (Start of a DEBUG Session)
	3.2 SAVEON Command (Activating the Patch Function)
	3.3 SAVEOFF Command (Deactivating the Patch Function)
	3.4 TERM Command (Terminating a DEBUG Session)
	3.5 RESET Command (Resetting the Trace Buffer)
	3.6 IN Command (Entering Instructions Interactively)
	3.7 RUN Command (Entering Instructions from the File (Runfile))
	3.8 FILE Command (Controlling the Trace Buffer Logging Operation)
	3.9 PRINT Command (Printing the Trace Buffer and the Log File)
	3.10 TRIGGON Command (Activate Trigger Mode)
	3.11 TRIGGOFF Command (Deactivate Trigger Mode)
	3.12 SEL Command (Set Trigger Mode Selection)
	3.13 LIST Command (Output of Lists)
	3.14 DEF Command (Define Symbols)
	3.15 REDEF Command (Redefine Symbol)
	3.16 DCL Command (Define DEBUG Variable)
	3.17 REDCL Command (Redefine DEBUG Variable)
	3.18 AT Command (Define Test Order)
	3.19 REMAT Command (Delete Test Order)
	3.20 MDEF Command (Define Macro)
	3.21 MCALL Command (Call Macro Operation)
	3.22 REMMAC Command (Delete Macro)
	3.23 RUNON Command (Runfile Online: Activate Logging)
	3.24 RUNOFF Command (Runfile Online: Deactivate Logging)
	3.25 EXEC Command (Start Exit Routine)
	3.26 STOP Command (Stop Task)
	3.27 CONT Command (Continue Task)
	3.28 BREAK Command (Stop Processor)
	3.29 GO Command (Continue Processor)
	3.30 GOFOR Command (Deactivate Break Mode)
	3.31 GOTIL Command (Define Breakpoints)
	3.32 REMOVE Command (Delete Breakpoint)
	3.33 DOWHILE Command (Define Loop)
	3.34 ACT Command (Activate Test Order)
	3.35 DEACT Command (Deactivate Test Order)
	3.36 LOGON Command (Activate Trigger Entry)
	3.37 LOGOFF Command (Deactivate Trigger Entry)
	3.38 D Command (Display Memory Contents)
	3.39 TRACE Command (Trace Memory Contents)
	3.40 SET Command (Modify Memory Contents)
	3.41 VIEW Command (Output of Object Information)
	3.42 INSP Command (Output of JOB and TASK Information)
	3.43 IF Command (Define Conditions)
	3.44 ! Command (Execute Instructions)
	3.45 WRITE Command (Write Comments)
	3.46 END Command (Terminate Interactive Level)

	4 Adressing
	4.1 Numerical Addressing Carried out with the Aid of DEF Symbols
	4.2 Addressing CHILL Variables
	4.2.1 Basic Data Types
	4.2.2 Combinations

	5 Special Applications
	5.1 Testing with Dynamic Variables
	5.2 Testing with Processor Stop
	5.3 Global example

	6 Messages
	6.1 DEBUG Message Classes
	6.2 DEBUG Message Format
	6.3 Fixed Message Component Format

	7 Syntax Error
	7.1 Syntax Error Handling with Special Commands
	7.2 Syntax Error Handling for Normal Commands
	7.3 Syntax Error Handling in Runfiles

	8 Syntax in BNF
	9 User Information
	9.1 General
	9.2 Generation Limit Values

	10 List of DEBUG Messages
	Index

